Capacitor coils are a type of laser-driven solenoid that consists of two metal plates held in parallel, connected by a loop of wire or metallic ribbon[
High Power Laser Science and Engineering, Volume. 8, Issue 2, 02000e11(2020)
Proton deflectometry of a capacitor coil target along two axes Editors' Pick
A developing application of laser-driven currents is the generation of magnetic fields of picosecond–nanosecond duration with magnitudes exceeding
1 Introduction
Capacitor coils are a type of laser-driven solenoid that consists of two metal plates held in parallel, connected by a loop of wire or metallic ribbon[
Capacitor coil magnetic fields of 1–1000 T have been reported at different laser facilities using a range of diagnostics, although harsh laser-plasma conditions make it difficult to reliably estimate the magnetic field inside the coil loop[
Proton deflectometry with radiochromic film[
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
In this paper, we present proton probing of a capacitor coil target along two axes. Figure
Since proton deflection in electromagnetic fields depends on the proton energy,
Proton deflectometry has been used in single- and dual-axis configurations to diagnose magnetic fields in laser-heated plasmas[
All data used to produce the figures in this work, along with other supporting materials, can be found at
2 Experimental setup
Our experiment was conducted on the Vulcan Target Area West (TAW) laser system at the Central Laser Facility. Three ‘long pulse’ beams were used to drive the capacitor coil with a combined energy of
3 Proton deflectometry
3.1 Synthetic proton deflectometry
By comparing the experimental RCF data to synthetic proton radiographs generated using the EPOCH particle-in-cell code[
3.2 Perpendicular deflectometry: B-field-only simulations
Simulated radiographs of protons passing perpendicularly across a static capacitor coil magnetic field are shown in Figure
3.3 Perpendicular deflectometry: combined E- and B-field simulations
An accumulation of negative charge in the vicinity of the wire loop could produce strong electric fields that reduce the size of the proton void generated by the magnetic fields. Thus simulations that include negative electric charges can predict higher loop currents than simulations with just a magnetic field alone[
Charge separation in the laser focal spot will generate a positive potential that spreads out over the capacitor coil plates and connecting wire[
The larger the electrostatic charge, the stronger the grid deflection around the loop. In Section
3.4 Axial deflectometry: negative charge distribution
Grid deflection in the axial proton images can provide information about the likely charge distribution present around the target – essential for accurate simulations of proton deflectometry. Figure
In Figure
3.5 Axial deflectometry: upper limits on capacitor coil magnetic field
EPOCH simulations of protons passing through a current loop suggest that the beam will rotate as it passes through the magnetic field (clockwise or anticlockwise depending on the polarization of the current). Thus if a fiducial (e.g., high-
Grid deflection close to the wire surface can also be used as a measure of the wire current and magnetic field. The vertical wires under the capacitor coil loop provide a simplified geometry for conducting simulations of the magnetic field. Figure
4 Discussion
Comparing synthetic proton radiographs with a range of current and charge distributions is necessary to place upper and lower limits on the capacitor coil magnetic field. EPOCH simulations show that negative charges around the wire allow us to infer larger loop currents, but there is no experimental evidence for this effect in the axial RCF data. Enhanced current estimates of
The approximate magnetic field energy for the 1-mm-diameter targets is given by
The hot electron temperature achieved in the laser focal spot can be estimated from the Forslund
Based on a laser-diode model of the capacitor coil target[
5 Conclusion
In summary, we have demonstrated dual-axis proton probing of the electromagnetic fields around a capacitor coil target at a laser drive intensity of
[1] H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, H. Fujita, Y. Kitagawa, S. Nakai, C. Yamanaka. Phys. Rev. Lett., 56, 846(1986).
[2] C. Goyon, B. B. Pollock, D. P. Turnbull, A. Hazi, L. Divol, W. A. Farmer, D. Haberberger, J. Javedani, A. J. Johnson, A. Kemp, M. C. Levy, B. G. Logan, D. A. Mariscal, O. L. Landen, S. Patankar, J. S. Ross, A. M. Rubenchik, G. F. Swadling, G. J. Williams, S. Fujioka, K. F. F. Law, J. D. Moody. Phys. Rev. E, 95(2017).
[3] Z. Zhang, B. Zhu, Y. Li, W. Jiang, D. Yuan, H. Wei, G. Liang, F. Wang, G. Zhao, J. Zhong, B. Han, N. Hua, B. Zhu, J. Zhu, C. Wang, Z. Fang, J. Zhang. High Power Laser Sci. Eng., 6(2018).
[4] J. H. Gardner, M. J. Herbst, F. C. Young, J. A. Stamper, S. P. Obenschain, C. K. Manka, K. J. Kearney, J. Grun, D. Duston, P. G. Burkhalter. Phys. Fluids, 29, 1305(1986).
[5] J. A. Stamper, K. Papadopoulos, R. N. Sudan, S. O. Dean, E. A. McLean, J. M. Dawson. Phys. Rev. Lett., 26, 1012(1971).
[6] V. T. Tikhonchuk, M. Bailly-Grandvaux, J. J. Santos, A. Poyé. Phys. Rev. E, 96(2017).
[7] N. C. Woolsey, Y. A. Ali, R. G. Evans, R. A. D. Grundy, S. J. Pestehe, P. G. Carolan, N. J. Conway, R. O. Dendy, P. Helander, K. G. McClements, J. G. Kirk, P. A. Norreys, M. M. Notley, S. J. Rose. Phys. Plasmas, 8, 2439(2001).
[8] J. J. Santos, M. Bailly-Grandvaux, M. Ehret, A. V. Arefiev, D. Batani, F. N. Beg, A. Calisti, S. Ferri, R. Florido, P. Forestier-Colleoni, S. Fujioka, M. A. Gigosos, L. Giuffrida, L. Gremillet, J. J. Honrubia, S. Kojima, P. Korneev, K. F. F. Law, J.-R. Marquès, A. Morace, C. Mossé, O. Peyrusse, S. Rose, M. Roth, S. Sakata, G. Schaumann, F. Suzuki-Vidal, V. T. Tikhonchuk, T. Toncian, N. Woolsey, Z. Zhang. Phys. Plasmas, 25(2018).
[9] L. J. Perkins, B. G. Logan, G. B. Zimmerman, C. J. Werner. Phys. Plasmas, 20(2013).
[10] G. H. Miley, H. Hora, G. Kirchhoff. J. Phys.: Conf. Ser., 717(2016).
[11] M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, R. D. Petrasso. Phys. Plasmas, 19(2012).
[12] M. Bailly-Grandvaux, J. J. Santos, C. Bellei, P. Forestier-Colleoni, S. Fujioka, L. Giuffrida, J. J. Honrubia, D. Batani, R. Bouillaud, M. Chevrot, J. E. Cross, R. Crowston, S. Dorard, J.-L. Dubois, M. Ehret, G. Gregori, S. Hulin, S. Kojima, E. Loyez, J.-R. Marquès, A. Morace, P. Nicolaï, M. Roth, S. Sakata, G. Schaumann, F. Serres, J. Servel, V. T. Tikhonchuk, N. Woolsey, Z. Zhang. Nat. Commun., 9, 102(2018).
[13] S. Weng, Q. Zhao, Z. Sheng, W. Yu, S. Luan, M. Chen, L. Yu, M. Murakami, W. B. Mori, J. Zhang. Optica, 4, 1086(2017).
[14] B. J. Winjum, F. S. Tsung, W. B. Mori. Phys. Rev. E, 98(2018).
[15] M. R. Edwards, Y. Shi, J. M. Mikhailova, N. J. Fisch. Phys. Rev. Lett., 123(2019).
[16] J. J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka, Z. Zhang, P. Korneev, R. Bouillaud, S. Dorard, D. Batani, M. Chevrot, J. E. Cross, R. Crowston, J.-L. Dubois, J. Gazave, G. Gregori, E. d’Humières, S. Hulin, K. Ishihara, S. Kojima, E. Loyez, J.-R. Marquès, A. Morace, P. Nicolaï, O. Peyrusse, A. Poyé, D. Raffestin, J. Ribolzi, M. Roth, G. Schaumann, F. Serres, V. T. Tikhonchuk, P. Vacar, N. Woolsey. New J. Phys., 17(2015).
[17] L. Gao, H. Ji, G. Fiksel, W. Fox, M. Evans, N. Alfonso. Phys. Plasmas, 23(2016).
[18] C. Courtois, A. D. Ash, D. M. Chambers, R. A. D. Grundy, N. C. Woolsey. J. Appl. Phys., 98(2005).
[19] K. F. F. Law, M. Bailly-Grandvaux, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo, K. Kondo, Z. Zhang, C. Bellei, J. J. Santos, S. Fujioka, H. Azechi. Appl. Phys. Lett., 108(2016).
[20] P. Bradford, N. C. Woolsey, G. G. Scott, G. Liao, H. Liu, Y. Zhang, B. Zhu, C. Armstrong, S. Astbury, C. Brenner, P. Brummitt, F. Consoli, I. East, R. Gray, D. Haddock, P. Huggard, P. J. R. Jones, E. Montgomery, I. Musgrave, P. Oliveira, D. R. Rusby, C. Spindloe, B. Summers, E. Zemaityte, Z. Zhang, Y. Li, P. McKenna, D. Neely. High Power Laser Sci. Eng., 6, e21(2018).
[21] A. Poyé, S. Hulin, M. Bailly-Grandvaux, J.-L. Dubois, J. Ribolzi, D. Raffestin, M. Bardon, F. Lubrano-Lavaderci, E. D’Humières, J. J. Santos, P. Nicolaï, V. Tikhonchuk. Phys. Rev. E, 91(2015).
[22] D. Lichtman, J. F. Ready. Phys. Rev. Lett., 10, 342(1963).
[23] J. F. Dempsey, D. A. Low, S. Mutic, J. Markman, A. S. Kirov, G. H. Nussbaum, J. F. Williamson. Med. Phys., 27, 2462(2000).
[24] N. L. Kugland, D. D. Ryutov, C. Plechaty, J. S. Ross, H.-S. Park. Rev. Sci. Instrum., 83(2012).
[25] A. F. A. Bott, C. Graziani, P. Tzeferacos, T. G. White, D. Q. Lamb, G. Gregori, A. A. Schekochihin. J. Plasma Phys., 83(2017).
[26] M. F. Kasim, L. Ceurvorst, N. Ratan, J. Sadler, N. Chen, A. Sävert, R. Trines, R. Bingham, P. N. Burrows, M. C. Kaluza, P. Norreys. Phys. Rev. E, 95(2017).
[27] S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, R. A. Snavely. Phys. Plasmas, 8, 542(2001).
[28] W. Wang, H. Cai, J. Teng, J. Chen, S. He, L. Shan, F. Lu, Y. Wu, B. Zhang, W. Hong, B. Bi, F. Zhang, D. Liu, F. Xue, B. Li, H. Liu, W. He, J. Jiao, K. Dong, F. Zhang, Y. He, B. Cui, N. Xie, Z. Yuan, C. Tian, X. Wang, K. Zhou, Z. Deng, Z. Zhang, W. Zhou, L. Cao, B. Zhang, S. Zhu, X. He, Y. Gu. Phys. Plasmas, 25(2018).
[29] S. Le Pape, P. Patel, S. Chen, R. Town, D. Hey, A. Mackinnon. High Energy Density Phys., 6, 365(2010).
[30] C. A. Cecchetti, M. Borghesi, J. Fuchs, G. Schurtz, S. Kar, A. Macchi, L. Romagnani, P. A. Wilson, P. Antici, R. Jung, J. Osterholtz, C. A. Pipahl, O. Willi, A. Schiavi, M. Notley, D. Neely. Phys. Plasmas, 16(2009).
[31] M. J.-E. Manuel, N. Sinenian, F. H. Séguin, C. K. Li, J. A. Frenje, H. G. Rinderknecht, D. T. Casey, A. B. Zylstra, R. D. Petrasso, F. N. Beg. Appl. Phys. Lett., 100(2012).
[32] D. Mariscal, C. McGuffey, J. Valenzuela, M. S. Wei, J. P. Chittenden, N. Niasse, R. Presura, S. Haque, M. Wallace, A. Arias, A. Covington, H. Sawada, P. Wiewior, F. N. Beg. Appl. Phys. Lett., 105(2014).
[33] P. McKenna, F. Lindau, O. Lundh, D. Neely, A. Persson, C.-G. Wahlström. Phil. Trans. R. Soc. A, 364, 711(2006).
[34] C. S. Brady, T. D. Arber. Plasma Phys. Control. Fusion, 53(2010).
[35] K. Quinn, P. A. Wilson, C. A. Cecchetti, B. Ramakrishna, L. Romagnani, G. Sarri, L. Lancia, J. Fuchs, A. Pipahl, T. Toncian, O. Willi, R. J. Clarke, D. Neely, M. Notley, P. Gallegos, D. C. Carroll, M. N. Quinn, X. H. Yuan, P. McKenna, T. V. Liseykina, A. Macchi, M. Borghesi. Phys. Rev. Lett., 102(2009).
[36] S. Kar, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann, B. Aurand, G. Cantono, P. Hadjisolomou, C. L. Lewis, A. Macchi, G. Nersisyan, A. P. L. Robinson, A. M. Schroer, M. Swantusch, M. Zepf, O. Willi, M. Borghesi. Nat. Commun., 7(2016).
[37] G. Fiksel, W. Fox, L. Gao, H. Ji. Appl. Phys. Lett., 109(2016).
[38] D. W. Forslund, J. M. Kindel, K. Lee. Phys. Rev. Lett., 39, 284(1977).
Get Citation
Copy Citation Text
P. Bradford, M. P. Read, M. Ehret, L. Antonelli, M. Khan, N. Booth, K. Glize, D. Carroll, R. J. Clarke, R. Heathcote, S. Ryazantsev, S. Pikuz, C. Spindloe, J. D. Moody, B. B. Pollock, V. T. Tikhonchuk, C. P. Ridgers, J. J. Santos, N. C. Woolsey. Proton deflectometry of a capacitor coil target along two axes[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e11
Category: Research Articles
Received: Dec. 21, 2019
Accepted: Feb. 26, 2020
Posted: Feb. 28, 2020
Published Online: Apr. 22, 2020
The Author Email: P. Bradford (philip.bradford@york.ac.uk)