OCIS code 170.6935; 080.2720; 140.6810
Chinese Journal of Lasers, Volume. 47, Issue 12, 1207003(2020)
Effect of Non-Fourier Heat-Flux Boundary Conditions on Heat Conduction Behavior of Laser-Irradiated Biological Tissues
The dual phase lagging (DPL) non-Fourier heat transfer model can reflect the transient interaction process between pulsed laser and biological tissues. However, in many literatures where the DPL model is used to study the heat conduction mechanism of biological tissues, there exist both Fourier and non-Fourier boundary conditions and thus many induced conclusions are contradictory. In this paper, the control equation based on the DPL non-Fourier model is adopted and the Fourier and non-Fourier boundary conditions are derived. Meanwhile, the analytical solutions under the above conditions are obtained by integral transformation and Laplace transformation. The biological tissues are taken as an example and the calculation results show that as for the non-Fourier control equation, the predicted temperature distribution in tissues based on the non-Fourier boundary condition is in accordance with the energy conservation law, while the result based on the Fourier boundary condition is not. The conclusions on the temperature rising amplitude and temperature rising rate are opposite for the two kinds of boundary conditions. Moreover, the thermal damage predicted under the Fourier boundary conditions is overly conservative and obviously lower than that under the non-Fourier boundary conditions. Finally, from the point view of energy conservation, the DPL non-Fourier boundary condition is just the DPL energy conservation equation of boundary, while the Fourier boundary condition is the energy conservation equation of the Fourier model. The Fourier control equation of bio-heat conduction should be matched with the Fourier boundary conditions, while the non-Fourier control equation of bio-heat conduction should be matched with the non-Fourier boundary conditions.
OCIS code 170.6935; 080.2720; 140.6810
1 引言
激光技术已广泛应用于现代医学治疗[
显然,建立能够准确描述激光辐照下生物组织传热的数学模型对激光热疗具有重要的指导意义。迄今为止,已有多种生物传热模型被提出,包括基于傅里叶定律的生物传热模型[
傅里叶模型隐含着热扰动的无限传播速度[
事实上,对于生物组织热疗领域的非傅里叶热传导方程,经典的Neumann边界条件并不适用于非傅里叶传热方程。研究者对皮肤组织温度响应的非傅里叶边界条件进行了相关研究。Furghani等[
对于已经刊出的关于傅里叶边界条件和非傅里边界条件的研究,很少有实验加以佐证,文献[
2 数学模型
2.1 控制方程
本文重点讨论双相滞生物传热模型。考虑
Figure 1.Schematic of laser heating of biological tissues
生物组织内部的传热服从双相滞非傅里叶本构关系:
式中:
结合引入血流灌注的Pennes生物能量守恒方程:
得到双相滞后生物传热方程为
式中:
当忽略内部相互作用即
进一步忽略热流快速加热效应,得到经典的傅里叶型生物传热方程
2.2 边界条件和初始条件
为了建立基于非傅里叶传热机制的Neumman边界条件,在
考虑DPL模型,则
当
将(8)式代入(9)式,获得
(10)式就是DPL非傅里叶模型对应的热流Neumman边界条件,当忽略内部相互作用即
当考虑傅里叶导热机制时,第二类热流Neumman边界条件为
可以看出,(10)式和(11)式右边含有热流的松弛效应,(10)式左边还含有温度梯度相延迟项,它们都是基于能量方程和非傅里叶定律获得的,因此(10)式和(11)式是DPL和SPL非傅里叶边界能量守恒方程。(12)式是经典傅里叶边界能量守恒方程,该方程是基于微元体能量方程和傅里叶定律获得的,两者在数学表达式上是有差别的。
对应
初始时刻认为组织完全被血流灌注,动脉血处于平衡态,且组织本身处于准静态。因此初始条件可以表示为
3 温度场的求解
设
为了求解方便,将SPL、DPL和Pennes生物热传导方程及其对应的边界条件进行无量纲处理。引入无量纲量
式中:
3.1 非傅里叶和傅里叶边界条件DPL模型的解
考虑定常
式中:
加热侧非傅里叶边界条件为
式中:
加热侧傅里叶边界条件为
另一侧按绝热边界对待,有
初始条件
从(17)式和边界条件(18)~(20)式,运用有限余弦傅里叶变换和拉普拉斯变换进行求解,其最后的解为
非傅里叶边界条件时
式中:
傅里叶边界条件时
式中:
当
当
式中:ε1=
3.2 Pennes模型的解
令(17)~(18)式中
式中:
4 算例和讨论
为了讨论非傅里叶Neumann边界条件对生物组织内传热的影响,选取文献[
Figure 2.Temperature distributions under different boundary conditions when t=10s and
|
可以看出,傅里叶边界条件和非傅里叶边界条件对生物体内的温度分布的影响明显不一样,究竟哪种温度分布更合理呢?从热波传播速度来看,热传播速度越快,温度应该越低;相反,热传播速度越慢,温度应该越高。其次,从能量守恒定律分析,在0~10s内,同一时刻接收到的能量应该是一样的,包括Pennes模型在内的各条曲线与横轴围成的面积应该是一样的。但从
为了进一步说明非傅里叶边界条件与经典傅里叶边界条件所带来的预测温度的差别,
Figure 3.Temperature variations at x=0 under different boundary conditions when τq=16s. (a) Fourier boundary conditions; (b) non-Fourier boundary conditions
Figure 4.Temperature variations at x=1.2mm under different boundary conditions when
在
在生物医学工程中,热损伤是激光手术的重要参数。一般认为,热损伤始于基底层温度,表皮与真皮的界面温度上升到44℃时热损伤就开始发生[
式中:频率因子
Figure 5.Thermal damage variations at x=0 and x=1.2mm under different boundary conditions when τq=16s. (a) Fourier boundary conditions at x=0; (b) non-Fourier boundary conditions at x=0; (c) Fourier boundary conditions at x=1.2mm; (d) non-Fourier boundary conditions at x=1.2mm
5 结论
针对激光加热中生物传热的非傅里叶效应,推导了非傅里叶生物传热方程,建立了相应的非傅里叶Neumann边界条件。通过傅里叶变换和拉普拉斯变换得到解析解,对傅里叶和非傅里叶Neumann边界条件下的非傅里叶生物热方程的解析解进行了比较和讨论,得出以下结论:
1)边界条件本质上是描述边界上的热平衡方程,非傅里叶传热方程对应的边界条件应该是非傅里叶边界条件,傅里叶传热方程对应的边界条件应该是傅里叶边界条件。
2)边界条件和控制方程应是相容的。对于非傅里叶传热控制方程,采用傅里叶边界条件时,温度分布和温度变化会出现与物理学原理相违背的情况,而非傅里叶传热方程与非傅里叶边界条件相结合,所得结论与物理学原理一致。
3)利用非傅里叶Neumann边界条件,非傅里叶传热方程预测的温度和热损伤值均分别高于Pennes预测的温度和热损伤值,且所得结论与傅里叶边界条件下所得结论是相反的,这一点是对一些现有文献所得结论的纠正,在以后的使用中应予以重视。
[3] Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 85, 5-34(1948).
[4] Liu J, Ren Z P, Wang C C[J]. Interpretation of living tissue's temperature oscillations by thermal wave theory Chinese Science Bulletin, 1995, 1493-1495.
[5] Xu F, Lu T J. Introduction to skin biothermomechanics and thermal pain[M]. Heidelberg: Springer(2011).
[6] Antaki P J. New interpretation of non-Fourier heat conduction in processed meat[J]. Journal of Heat Transfer, 127, 189-193(2005).
[7] Xu F, Lu T J, Seffen K A. Dual-phase-lag model of skin bioheat transfer. [C]//2008 International Conference on BioMedical Engineering and Informatics, May 27-30, 2008, Sanya, China. New York: IEEE, 10029091(2008).
[8] Xu G Y, Wang J B, Han Z. Study on the transient temperature field based on the fractional heat conduction equation for laser heating[J]. Applied Mathematics and Mechanics, 36, 844-854(2015).
[11] Kumar D, Singh S, Rai K N. Analysis of classical Fourier, SPL and DPL heat transfer model in biological tissues in presence of metabolic and external heat source[J]. Heat and Mass Transfer, 52, 1089-1107(2016).
[12] Ziaei P, Moosavi H, Moradi A. Analysis of the dual phase lag bio-heat transfer equation with constant and time-dependent heat flux conditions on skin surface[J]. Thermal Science, 20, 1457-1472(2016).
[14] Maurer M J, Thompson H A. Non-Fourier effects at high heat flux[J]. Journal of Heat Transfer, 95, 284-286(1973).
[16] Antaki P J. Analysis of hyperbolic heat conduction in a semi-infinite slab with surface convection[J]. International Journal of Heat and Mass Transfer, 40, 3247-3250(1997).
[19] Forghani P, Ahmadikia H, Karimipour A. Non‐Fourier boundary conditions effects on the skin tissue temperature response[J]. Heat Transfer Research, 46, 29-48(2017).
[20] Kumar P, Kumar D, Rai K N. Numerical simulation of dual-phase-lag bioheat transfer model during thermal therapy[J]. Mathematical Biosciences, 281, 82-91(2016).
[21] Wang J B, Wang J, Tian M L et al. Study on multi-pulse heat flow heating biological tissue based on thermal wave model[J]. Journal of Engineering Thermophysics, 40, 1904-1912(2019).
[22] Tzou D Y. Macro- to microscale heat transfer: the lagging behavior[M]. 2nd ed. Chichester :John Wiley & Sons, Ltd.(2015).
[24] Xu H Y. Research on the application of fractional calculus in anomalous transportation[D]. Jinan: Shandong University(2017).
[25] Torvi D A, Dale J D. A finite element model of skin subjected to a flash fire[J]. Journal of Biomechanical Engineering, 116, 250-255(1994).
[26] Henriques F, Montz A. Studies of thermal injury: I. The conduction of heat to and through skin and the temperature attained therein. A theoretical and experimental investigation[J]. American Journal of Pathology, 23, 530-549(1947).
Get Citation
Copy Citation Text
Xu Guangying, Xue Dawen, Wang Jinbao. Effect of Non-Fourier Heat-Flux Boundary Conditions on Heat Conduction Behavior of Laser-Irradiated Biological Tissues[J]. Chinese Journal of Lasers, 2020, 47(12): 1207003
Category: biomedical photonics and laser medicine
Received: Jun. 2, 2020
Accepted: --
Published Online: Nov. 17, 2020
The Author Email: Dawen Xue (xuedw@zjou.edu.cn)