Chinese Physics B, Volume. 29, Issue 10, (2020)

Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation

Ming Song1、†, Beidan Wang1, and Jun Cao2
Author Affiliations
  • 1Department of Mathematics, Shaoxing University, Shaoxing 32000, China
  • 2Department of Mathematics, Yuxi Normal University, Yuxi 653100, China
  • show less

    We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane system corresponding to the GMDWW equation. By using the special orbits in the phase portraits, we analyze the existence of the traveling wave solutions. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions for the GMDWW equation.

    Keywords

    1. Introduction

    The (2+1)-dimensional modified dispersive water wave equation[18]

    $$ \begin{eqnarray}\left\{\begin{array}{c}{u}_{yt}+{u}_{xxy}-2{w}_{xx}-2{(u{u}_{y})}_{x}=0,\\ {w}_{t}-{w}_{xx}-2{(uw)}_{x}=0\end{array}\right.\end{eqnarray}$$ (1)

    is used to describe the nonlinear and dispersive long gravity waves traveling in two horizontal directions on shallow waters of uniform depth. Equation (1) has been widely used in fluid dynamics, nonlinear optics, and plasma physics. Zheng[3] used the variable separation approach to obtain a number of structures of the localized solutions of Eq. (1). Li and Zhang[4] obtained abundant non-traveling wave solutions of Eq. (1) by utilizing the generalized projective Riccati equation method. Ma[5] used the projective Riccati equation expansion method to obtained three variable separation solutions of Eq. (1). Huang[6] obtained periodic folded wave patterns of Eq. (1) by using the WTC truncation method. Wen and Xu[7] applied the Bäcklund transformation and the Hirota bilinear method to obtain multiple soliton solutions of Eq. (1). Ren et al.[8] used the standard Hirota bilinear method to get a number of lump solutions of Eq. (1).

    In this work, we employ the bifurcation theory of dynamical systems[918] to study the following (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation:

    $$ \begin{eqnarray}\left\{\begin{array}{c}{u}_{yt}+{u}_{xxy}-a{w}_{xx}-a{(u{u}_{y})}_{x}=0,\\ {w}_{t}-{w}_{xx}-a{(uw)}_{x}=0,\end{array}\right.\end{eqnarray}$$ (2)

    where a is a positive constant. We obtain the phase portraits of plane system corresponds to the GMDWW equation. We analyze the existence of the traveling wave solutions by using the special orbits in the phase portraits. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, and periodic singular wave solutions, and exact solitary wave solutions for the GMDWW equation.

    The remainder of this work is organized as follows. In Section 2, we study the phase portraits and bifurcation analysis for Eq. (2). In Section 3, we obtain abundant exact traveling wave solutions of Eq. (2). The profiles of some exact traveling wave solutions are given in Section 4. A brief conclusion is given in Section 5.

    2. Phase portraits and bifurcation analysis

    By using the following transformation:

    $$ \begin{eqnarray}u=\phi (\zeta),\,w=\psi (\zeta),\,\zeta =x+y-ct,\end{eqnarray}$$ (3)

    where c is a positive constant wave speed, equation (2) can be reduced to the following equation:

    $$ \begin{eqnarray}\left\{\begin{array}{c}-c{\phi }^{\prime \prime }+{\phi }^{\prime \prime \prime}-a{\psi }^{\prime \prime}-a{(\phi {\phi }^{\prime})}^{\prime}=0,\\ -c{\psi }^{\prime}-{\psi }^{\prime \prime}-a{(\phi \psi)}^{\prime}=0.\end{array}\right.\end{eqnarray}$$ (4)

    Integrating the above first equation twice with regard to ζ and letting the integral constants be zero, we obtain

    $$ \begin{eqnarray}-c\phi +{\phi }^{^{\prime} }-a\psi -\displaystyle \frac{a}{2}{\phi }^{2}=0.\end{eqnarray}$$ (5)

    Integrating the second equation of Eq. (4) once with regard to ζ, we obtain

    $$ \begin{eqnarray}-c\psi -{\psi }^{^{\prime} }-a\phi \psi ={g}_{1},\end{eqnarray}$$ (6)

    where g1 is the integral constant.

    Using Eqs. (5) and (6), we obtain

    $$ \begin{eqnarray}{\phi }^{\prime \prime}=\displaystyle \frac{{a}^{2}}{2}{\phi }^{3}+\displaystyle \frac{3ac}{2}{\phi }^{2}+{c}^{2}\phi +g.\end{eqnarray}$$ (7)

    where g = –a g1.

    From Eq. (7), we establish a planar system

    $$ \begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{{\rm{d}}\phi }{{\rm{d}}\zeta }=\varphi,\\ \displaystyle \frac{{\rm{d}}\varphi }{{\rm{d}}\zeta }=\displaystyle \frac{{a}^{2}}{2}{\phi }^{3}+\displaystyle \frac{3ac}{2}{\phi }^{2}+{c}^{2}\phi +g.\end{array}\right.\end{eqnarray}$$ (8)

    Evidently, the system (8) is a Hamiltonian system with the following Hamiltonian function:

    $$ \begin{eqnarray}H(\phi,\varphi)=\displaystyle \frac{1}{2}{\varphi }^{2}-\displaystyle \frac{{a}^{2}}{8}{\phi }^{4}-\displaystyle \frac{ac}{2}{\phi }^{3}-\displaystyle \frac{{c}^{2}}{2}{\phi }^{2}-g\phi =h,\end{eqnarray}$$ (9)

    where h is the Hamiltonian.

    Suppose that

    $$ \begin{eqnarray}f(\phi)=\displaystyle \frac{{a}^{2}}{2}{\phi }^{3}+\displaystyle \frac{3ac}{2}{\phi }^{2}+{c}^{2}\phi,\end{eqnarray}$$ (10)

    we know that the equation f(ϕ) = 0 has following three real roots:

    $$ \begin{eqnarray}{\phi }_{0}=0,\,{\phi }_{1}=-\displaystyle \frac{c}{a},\,{\phi }_{2}=-\displaystyle \frac{2c}{a},\end{eqnarray}$$ (11)

    and function (10) has two extreme points

    $$ \begin{eqnarray}{\phi }_{\pm }^{\ast }=\displaystyle \frac{-3c\pm \sqrt{3}c}{3a},\end{eqnarray}$$ (12)

    and two extreme values

    $$ \begin{eqnarray}{g}_{0}=f({\phi }_{-}^{\ast })=\displaystyle \frac{{c}^{3}}{3\sqrt{3}a},\,-{g}_{0}=f({\phi }_{+}^{\ast })=-\displaystyle \frac{{c}^{3}}{3\sqrt{3}a}.\end{eqnarray}$$ (13)

    By using the qualitative theory of dynamical systems,[19,20] we draw the phase portraits of system (8) in Fig. 1.

    The phase portraits of system (8): (a) g g0, (b) g = –g0, (c) –g0 g g = 0, (e) 0 g g0, (f) g = g0, (g) g > g0.

    Figure 1.The phase portraits of system (8): (a) g < –g0, (b) g = –g0, (c) –g0 < g < 0, (d) g = 0, (e) 0 < g < g0, (f) g = g0, (g) g > g0.

    If let

    $$ \begin{eqnarray}{h}_{i}=H({\phi }_{i},0),\,i=0,1,9,10,20,21,\end{eqnarray}$$ (14)

    where ϕ9(3c+3c3a,0) and
     1
    are the roots of f(ϕ) + g = 0, 0 < g < g0, ϕ20=3c+3c3a and ϕ21=3c3c3a are the roots of f(ϕ) + g0 = 0, then we can derive the relations between the orbits of system (8), traveling wave solutions of Eq. (2), and the Hamiltonian hi as the the following propositions 1–4.

    Proposition 1

    When g = 0: Suppose that h = h0, system (8) has two heteroclonic orbits Γ1 and Γ¯1 corresponding to two kink wave solutions of Eq. (2) and four special orbits Γ2,Γ¯2, Γ3, and Γ¯3 corresponding to two singular wave solutions of Eq. (2).Suppose that h1 < h < h0, system (8) has three periodic orbits Γ4,Γ4, and Γ¯4 corresponding to three periodic wave solutions of Eq. (2).Suppose that hh1, system (8) has two periodic orbits Γ5 and Γ¯5 corresponding to four periodic wave solutions of Eq. (2).Suppose that h > 0, system (8) has two special orbits Γ+ and Γ.

    Proposition 2

    When 0 < g < g0: Suppose that h = h9, system (8) has a homoclinic orbit Γ6 corresponding to a solitary wave solution of Eq. (2) and three special orbits Γ7,Γ8, and Γ¯8 corresponding to two singular wave solutions of Eq. (2).Suppose that h10 < h < h9, system (8) has three periodic orbits !, and Γ¯9 corresponding to three periodic wave solutions of Eq. (2).Suppose that hh10, system (8) has two periodic orbits Γ10 and Γ¯10 corresponding to two periodic wave solutions of Eq. (2).Suppose that h > h9, system (8) does not hanve any closed orbit.

    Proposition 3

    When g = g0: Suppose that h = h20, system (8) has three special orbits Γ11,Γ12, and Γ¯12 corresponding to three singular wave solutions of Eq. (2).Suppose that h < h20, system (8) has two special orbits Γ13 and Γ¯13.Suppose that h20 < h < h21, system (8) has two special orbits Γ14 and Γ¯14.Suppose that hh21, system (8) does not have any closed orbit.

    Proposition 4

    When g > g0 and h is an arbitrary constant, system (8) does not have any closed orbit.

    3. Traveling wave solutions

    For the convenience of exposition, we will omit the expressions of w with w(x,y,t)=ψ(ζ)=1aϕ(ζ)12ϕ2(ζ)caϕ(ζ) in this work.

    Proposition 5

    For the given positive constant c and transformation ζ = x + yct, we have the following results.

    (i) When g = 0, equation (2) has two kink wave solutions

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{2c\mathop{\phi }\limits^{\sim }}{(2c+a\mathop{\phi }\limits^{\sim })\exp (c\zeta)-a\mathop{\phi }\limits^{\sim }},\end{array}\end{eqnarray}$$ (15)

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{2c\mathop{\phi }\limits^{\sim }\exp (c\zeta)}{2c+a\mathop{\phi }\limits^{\sim }(1-\exp (c\zeta))},\end{array}\end{eqnarray}$$ (16)

    where ϕ(2ca,ca), two singular wave solutions

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{2c\exp (c\zeta)}{a(1-\exp (c\zeta))},\\ & & \end{array}\end{eqnarray}$$ (17)

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=-\displaystyle \frac{2c}{a(1-\exp (c\zeta))},\end{array}\end{eqnarray}$$ (18)

    four periodic singular periodic wave solutions

    $$ \begin{eqnarray}\begin{array}{lll} & & {u}_{\pm }(x,y,t)=\displaystyle \frac{c}{a}(-1\pm \sqrt{2}\sec \displaystyle \frac{\sqrt{2}c\zeta }{2}),\\ & & \end{array}\end{eqnarray}$$ (19)

    $$ \begin{eqnarray}\begin{array}{lll} & & {u}_{\pm }(x,y,t)=\displaystyle \frac{c}{a}(-1\pm \sqrt{2}\csc \displaystyle \frac{\sqrt{2}c\zeta }{2}),\end{array}\end{eqnarray}$$ (20)

    and three periodic wave solutions

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{{\phi }_{5}({\phi }_{8}-{\phi }_{6})+{\phi }_{6}({\phi }_{5}-{\phi }_{8}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{1}}\zeta,{k}_{1})}{{\phi }_{8}-{\phi }_{6}+({\phi }_{5}-{\phi }_{8}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{1}}\zeta,{k}_{1})},\\ & & \end{array}\end{eqnarray}$$ (21)

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{{\phi }_{6}({\phi }_{5}-{\phi }_{7})+{\phi }_{5}({\phi }_{7}-{\phi }_{6}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{1}}\zeta,{k}_{1})}{{\phi }_{5}-{\phi }_{7}+({\phi }_{7}-{\phi }_{6}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{1}}\zeta,{k}_{1})},\\ & & \end{array}\end{eqnarray}$$ (22)

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{{\phi }_{8}({\phi }_{7}-{\phi }_{5})+{\phi }_{7}({\phi }_{5}-{\phi }_{8}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{1}}\zeta,{k}_{1})}{{\phi }_{7}-{\phi }_{5}+({\phi }_{5}-{\phi }_{8}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{1}}\zeta,{k}_{1})},\end{array}\end{eqnarray}$$ (23)

    where h(c48a2,0) is the Hamiltonian,
     1

    (ii) When 0 < g < g0, equation (2) has one solitary wave solution

    $$ \begin{eqnarray}u(x,y,t)={\phi }_{9}+\displaystyle \frac{2\sqrt{2}\delta \beta \exp (\displaystyle \frac{\sqrt{2\delta }\zeta }{2})}{{a}^{2}{\phi }_{9}(a{\phi }_{9}+2c)(1+{e}^{\sqrt{2\delta }\zeta })-2\sqrt{2}a\beta (a{\phi }_{9}+c)\exp (\displaystyle \frac{\sqrt{2\delta }\zeta }{2})},\end{eqnarray}$$ (24)

    one singular wave solution

    $$ \begin{eqnarray}u(x,y,t)={\phi }_{9}-\displaystyle \frac{2\delta (2c+2a{\phi }_{9}+\sqrt{2\delta })\exp (\displaystyle \frac{\sqrt{2\delta }\zeta }{2})}{{a}^{2}{\phi }_{9}(2c+a{\phi }_{9})+a(\gamma -a{\phi }_{9}(2c+a{\phi }_{9}))\exp (\displaystyle \frac{\sqrt{2\delta }\zeta }{2})-a\gamma \exp (\sqrt{2\delta }\zeta)},\end{eqnarray}$$ (25)

    where ϕ9(3c+3c3a,0) is the initial value, β=aϕ9(2c+aϕ9), δ=2c2+6acϕ9+3a2ϕ92,γ=4c2+10acϕ9+5a2ϕ92+(2c+2aϕ9)2δ, and three periodic wave solutions

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{{\phi }_{16}({\phi }_{17}-{\phi }_{15})+{\phi }_{17}({\phi }_{15}-{\phi }_{16}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{2}}\zeta,{k}_{2})}{{\phi }_{17}-{\phi }_{15}+({\phi }_{15}-{\phi }_{16}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{2}}\zeta,{k}_{2})},\\ & & \end{array}\end{eqnarray}$$ (26)

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{{\phi }_{17}({\phi }_{16}-{\phi }_{14})+{\phi }_{16}({\phi }_{14}-{\phi }_{17}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{2}}\zeta,{k}_{2})}{{\phi }_{16}-{\phi }_{14}+({\phi }_{14}-{\phi }_{17}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{2}}\zeta,{k}_{2})},\\ & & \end{array}\end{eqnarray}$$ (27)

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{{\phi }_{14}({\phi }_{15}-{\phi }_{17})+{\phi }_{15}({\phi }_{17}-{\phi }_{14}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{2}}\zeta,{k}_{2})}{{\phi }_{15}-{\phi }_{17}+({\phi }_{17}-{\phi }_{14}){{\rm{sn}}}^{2}(\displaystyle \frac{a}{2{g}_{2}}\zeta,{k}_{2})},\end{array}\end{eqnarray}$$ (28)

    where
     1

    (iii) When g = g0, equation (2) has three singular wave solutions

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{9(1+\sqrt{3})c-(3-\sqrt{3}){c}^{3}{\zeta }^{2}}{3a({c}^{2}{\zeta }^{2}-3)},\\ & & \end{array}\end{eqnarray}$$ (29)

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{12\sqrt{3}-6(1-\sqrt{3})c\zeta -(3-\sqrt{3}){c}^{2}{\zeta }^{2}}{3a\zeta (c\zeta -2\sqrt{3})},\\ & & \end{array}\end{eqnarray}$$ (30)

    $$ \begin{eqnarray}\begin{array}{lll} & & u(x,y,t)=\displaystyle \frac{12\sqrt{3}+6(1-\sqrt{3})c\zeta -(3-\sqrt{3}){c}^{2}{\zeta }^{2}}{3a\zeta (c\zeta +2\sqrt{3})}.\end{array}\end{eqnarray}$$ (31)

    Proof (i) There are two heteroclinic orbits Γ1 and Γ1*, four special orbits Γ2, Γ¯2, Γ3, and Γ¯3 in Fig. 1(d). The orbits are defined by H(ϕ, φ) = H(ϕ0,0), which can be reduced to

    $$ \begin{eqnarray}\varphi =\pm \displaystyle \frac{a}{2}\phi (\phi -{\phi }_{2}),\end{eqnarray}$$ (32)

    where ϕ2 = –2c/a.

    Substituting Eq. (32) into d ϕ / d ζ = φ and integrating along the above orbits, we can obtain the following integrals:

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{\mathop{\phi }\limits^{\sim }}^{\phi }\displaystyle \frac{1}{r(r-{\phi }_{2})}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\end{array}\end{eqnarray}$$ (33)

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{\phi }^{+\infty }\displaystyle \frac{1}{r(r-{\phi }_{2})}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\end{array}\end{eqnarray}$$ (34)

    where ϕ(2ca,ca) is the initial value.

    Completing the integrals (33), (34) and utilizing the transformation (3), we obtain two kink solutions (15), (16) and two singular wave solutions (17), (18).

    There are two special orbits Γ5 and Γ¯5 in Fig. 1(d). The orbits are defined by H(ϕ, φ) = H(ϕ1,0), which can be reduced to

    $$ \begin{eqnarray}\varphi =\pm \displaystyle \frac{a}{2}(\phi +{\phi }_{1})\sqrt{(\phi -{\phi }_{3})(\phi -{\phi }_{4})},\end{eqnarray}$$ (35)

    where ϕ1=ca, ϕ3=c2ca, and ϕ4=c+2ca.

    Substituting Eq. (35) into d ϕ / d ζ = φ and integrating along the above orbits, we can obtain the following integrals:

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{3}}^{\phi }\displaystyle \frac{1}{(r-{\phi }_{1})\sqrt{(r-{\phi }_{3})(r-{\phi }_{4})}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\\ & & \end{array}\end{eqnarray}$$ (36)

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{\phi }^{\infty }\displaystyle \frac{1}{(r-{\phi }_{1})\sqrt{(r-{\phi }_{3})(r-{\phi }_{4})}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r.\end{array}\end{eqnarray}$$ (37)

    Completing the integrals (36), (37) and utilizing the transformation (3), we obtain the periodic signal wave solutions (19) and (20).

    There are one periodic orbit and two special orbits Γ4, Γ4, and Γ¯4 in Fig. 1(d). The orbits are given by H(ϕ, φ) = h, h∈(h1,h0), which can be converted to

    $$ \begin{eqnarray}z=\pm \displaystyle \frac{a}{2}\sqrt{(\phi -{\phi }_{5})(\phi -{\phi }_{6})(\phi -{\phi }_{7})(\phi -{\phi }_{8})},\end{eqnarray}$$ (38)

    where
     1
    Substituting Eq. (38) into dϕ/dζ=φ and integrating along the above orbits, we can obtain the following integrals:

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{6}}^{\phi }\displaystyle \frac{1}{\sqrt{(r-{\phi }_{5})(r-{\phi }_{6})({\phi }_{7}-r)({\phi }_{8}-r)}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\\ & & \end{array}\end{eqnarray}$$ (39)

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{5}}^{\phi }\displaystyle \frac{1}{\sqrt{({\phi }_{5}-r)({\phi }_{6}-r)({\phi }_{7}-r)({\phi }_{8}-r)}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\\ & & \end{array}\end{eqnarray}$$ (40)

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{8}}^{\phi }\displaystyle \frac{1}{\sqrt{(r-{\phi }_{5})(r-{\phi }_{6})(r-{\phi }_{7})(r-{\phi }_{8})}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r.\end{array}\end{eqnarray}$$ (41)

    Completing the integrals (39)–(41) and using the transformation (3), we obtain the periodic wave solutions (21)–(23).

    (ii) In Fig. 1(e), there are one homoclinic orbit Γ7 and three special orbits Γ6, Γ8, and Γ¯8. The orbits are defined by H(ϕ, φ) = H(ϕ9, 0), which can be converted to

    $$ \begin{eqnarray}\varphi =\pm \displaystyle \frac{a}{2}(\phi -{\phi }_{9})\sqrt{(\phi -{\phi }_{12})(\phi -{\phi }_{13})},\end{eqnarray}$$ (42)

    where ϕ9(3c+3c3a,0) is the initial value,
     1
    Substituting Eq. (42) into d ϕ / d ζ = φ, and integrating along the above orbits, we can obtain the following integrals:

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{12}}^{\phi }\displaystyle \frac{1}{(r-{\phi }_{9})\sqrt{(r-{\phi }_{12})(r-{\phi }_{13})}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\\ & & \end{array}\end{eqnarray}$$ (43)

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{\phi }^{+\infty }\displaystyle \frac{1}{(r-{\phi }_{9})\sqrt{(r-{\phi }_{12})(r-{\phi }_{13})}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r.\end{array}\end{eqnarray}$$ (44)

    Completing the integrals (43), (44) and using the transformation (3), we obtain the solitary wave solution (24) and the singular wave solution (25).

    Similarly, there are a periodic orbit Γ9, two special orbits Γ9 and Γ¯9 in Fig. 1(e). The orbits are defined by H(ϕ, φ) = h, h∈(h10,h9), which can be converted to

    $$ \begin{eqnarray}\varphi =\pm \displaystyle \frac{a}{2}\sqrt{(\phi -{\phi }_{14})(\phi -{\phi }_{15})(\phi -{\phi }_{16})(\phi -{\phi }_{17})},\end{eqnarray}$$ (45)

    where
     1
    Substituting Eq. (45) into d ϕ / d ζ = φ and integrating along the special orbits, we can obtain the following integrals:

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{14}}^{\phi }\displaystyle \frac{1}{\sqrt{(r-{\phi }_{14})(r-{\phi }_{15})(r-{\phi }_{16})(r-{\phi }_{17})}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\\ & & \end{array}\end{eqnarray}$$ (46)

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{16}}^{\phi }\displaystyle \frac{1}{\sqrt{({\phi }_{14}-r)({\phi }_{15}-r)(r-{\phi }_{16})(r-{\phi }_{17})}}{\rm{d}}s=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\end{array}\end{eqnarray}$$ (47)

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{17}}^{\phi }\displaystyle \frac{1}{\sqrt{({\phi }_{14}-r)({\phi }_{15}-r)({\phi }_{16}-r)({\phi }_{17}-r)}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r.\end{array}\end{eqnarray}$$ (48)

    Completing the integrals (46)–(48) and utilizing the transformation (3), we obtain the periodic wave solutions (26)–(28).

    (iii) In Fig. 1(e), three are three special orbits Γ11, Γ12, and Γ¯12. The orbits are defined by H(ϕ, φ) = H(ϕ20,0), which can be converted to

    $$ \begin{eqnarray}\varphi =\pm \displaystyle \frac{a}{2}(\phi -{\phi }_{20})\sqrt{(\phi -{\phi }_{20})(\phi -{\phi }_{22})},\end{eqnarray}$$ (49)

    where ϕ20=3c+3c3a and ϕ22=c+3ca.

    Substituting Eq. (49) into d ϕ / d ζ = φ and integrating along the above orbits, we can obtain the following integrals:

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{{\phi }_{22}}^{\phi }\displaystyle \frac{1}{(r-{\phi }_{20})\sqrt{(r-{\phi }_{20})(r-{\phi }_{22})}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r,\\ & & \end{array}\end{eqnarray}$$ (50)

    $$ \begin{eqnarray}\begin{array}{lll} & & \pm \displaystyle {\int }_{\phi }^{+\infty }\displaystyle \frac{1}{(r-{\phi }_{20})\sqrt{(r-{\phi }_{20})(r-{\phi }_{22})}}{\rm{d}}r=\displaystyle \frac{a}{2}\displaystyle {\int }_{0}^{\zeta }{\rm{d}}r.\end{array}\end{eqnarray}$$ (51)

    Completing the integrals (50), (51) and utilizing the transformation (3), we obtain the periodic wave solutions (29)–(31).

    4. Profiles of some traveling wave solutions

    In this section, we draw the profiles of some traveling wave solutions when some parameters take special values.

    (i) When a = 2, c = 2, and ϕ=1.8, we draw the profiles of the kink wave solution (15), singular wave solution (17), and periodic singular wave solution (19) in Fig. 2.

    The profiles of traveling wave solutions of Eq. (2). (a) Kink wave solution (15), (b) singular wave solution (17), (c) periodic singular wave solution (19).

    Figure 2.The profiles of traveling wave solutions of Eq. (2). (a) Kink wave solution (15), (b) singular wave solution (17), (c) periodic singular wave solution (19).

    (ii) When a = 2, c = 2, ϕ9 = –0.1, and h = –0.2, we draw the profiles of the periodic wave solution (22), solitary wave solution (24), and singular wave solution (29) in Fig. 3.

    The profiles of traveling wave solutions of Eq. (2). (a) Periodic wave solution (22), (b) solitary wave solution (24), (c) singular wave solution (29).

    Figure 3.The profiles of traveling wave solutions of Eq. (2). (a) Periodic wave solution (22), (b) solitary wave solution (24), (c) singular wave solution (29).

    5. Conclusion

    In this work, we utilize the bifurcation theory of planar dynamical systems to obtain the phase portraits and bifurcations analysis of the traveling wave system corresponding to Eq. (2). Furthermore, we have obtained abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions. We are convinced that, in the future, the method can also be applied to other partial differential equations and may find more new results.

    [1] V G Dubrovskyt, B G Konopelcbenkof. J. Phys. A: Math. Gen., 27, 4619(1994).

    [2] M Boitit, J J P Leon, M Manna, F Pempinellit. Inverse Probl., 3, 25(1987).

    [3] C L Zheng. Commun. Theor. Phys., 40, 25(2003).

    [4] D S Li, H Q Zhang. Chin. Phy., 13, 1377(2004).

    [5] Z Y Ma. Chin. Phy., 16, 1848(2007).

    [6] W H Huang. Chin. Phy. B, 18, 3163(2009).

    [7] X Y Wen, X G Xu. Appl. Math. Comput., 219, 7730(2013).

    [8] B Ren, W X Ma, J Yu. Comput. Math. Appl., 77, 2086(2019).

    [9] J B Li, Z R Liu. Appl. Math. Model., 25, 41(2000).

    [10] Z R Liu, C X Yang. J. Math. Anal. Appl., 275, 1(2002).

    [11] J B Li. Int. J. Bifur. Chaos, 22(2012).

    [12] M Song, Z R Liu. Math. Method Appl. Sci., 37, 393(2014).

    [13] Z S Wen. Math. Method Appl. Sci., 38, 2363(2015).

    [14] M Song. Nonlinear Dynamics, 80, 431(2015).

    [15] M Song, Z R Liu, C X Yang. Acta Math. Sin., 31, 1043(2015).

    [16] H X Zhao, S Q Tang. Math. Method Appl. Sci., 40, 2702(2017).

    [17] Y Li, S Y Li, R Y Wei. Nonlinear Dynam., 88, 609(2017).

    [18] L J Shi, Z S Wen. Chin. Phy. B, 28(2019).

    [19] J B Li, H H Dai. On the study of singular nonlinear traveling wave equations: Dynamical syetem approach(2007).

    [20] J B Li. Bifurcations and exact solutions in invariant manifolds for nonlinear wave equation(2019).

    Tools

    Get Citation

    Copy Citation Text

    Ming Song, Beidan Wang, Jun Cao. Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation[J]. Chinese Physics B, 2020, 29(10):

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 28, 2020

    Accepted: --

    Published Online: Apr. 21, 2021

    The Author Email: Ming Song (songming12_15@163.com)

    DOI:10.1088/1674-1056/ab9f27

    Topics