[1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).
[2] A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, G. C. Righini. Spherical whispering-gallery-mode microresonators. Laser Photonics Rev., 4, 457-482(2010).
[3] L. He, Ş. K. Özdemir, L. Yang. Whispering gallery microcavity lasers. Laser Photonics Rev., 7, 60-82(2013).
[4] M. D. Baaske, M. R. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol., 9, 933-939(2014).
[5] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, M. Loncar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).
[6] G. Lin, Q. Song. Review on Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects. Laser Photonics Rev., 2100184(2021).
[7] G. Poberaj, H. Hu, W. Sohler, P. Guenter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev., 6, 488-503(2012).
[8] Q. Song. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci. China: Phys. Mech. Astron., 62, 074231(2019).
[9] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, Y.-F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 43, 2917-2920(2018).
[10] Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, J. Xu. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci. China Phys. Mech. Astron., 61, 114211(2018).
[11] Z. Fang, S. Haque, S. Farajollahi, H. Luo, J. Lin, R. Wu, J. Zhang, Z. Wang, M. Wang, Y. Cheng, L. Tao. Polygon coherent modes in a weakly perturbed whispering gallery microresonator for efficient second harmonic, optomechanical, and frequency comb generations. Phys. Rev. Lett., 125, 173901(2020).
[12] J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, Y.-P. Huang. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).
[13] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).
[14] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics, 13, 359-364(2019).
[15] B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, M. Lončar. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380-384(2019).
[16] A. Rahim, A. Hermans, B. Wohlfeil, D. Petousi, B. Kuyken, D. Van Thourhout, R. Baets. “Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photonics, 3, 024003(2021).
[17] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).
[18] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, Y. Cheng. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).
[19] Y. He, H. Liang, R. Luo, M. Li, Q. Lin. Dispersion engineered high quality lithium niobate microring resonators. Opt. Express, 26, 16315-16322(2018).
[20] J. U. Nöckel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 385, 45-47(1997).
[21] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yílmaz, J. Wiersig, S. Rotter, L. Yang. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA, 113, 6845-6850(2016).
[22] X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y.-F. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).
[23] S.-J. Park, J.-H. Lim, Y.-H. Lee, I. Kim, J. Cho, S. Rim, M. Choi. Birefringent whispering gallery cavities designed by linear transformation optics. Opt. Express, 29, 9242-9251(2021).
[24] X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, Y.-F. Xiao. Whispering-gallery microcavities with unidirectional laser emission. Laser Photonics Rev., 10, 40-61(2016).
[25] S. C. Creagh, H. B. Hamdin, G. Tanner. In–out decomposition of boundary integral equations. J. Phys. A, 46, 435203(2013).
[26] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).
[27] R. W. Boyd. Nonlinear Optics(2020).
[28] M. Hentschel, H. Schomerus, R. Schubert. Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond. Europhys. Lett., 62, 636-642(2003).
[29] Y. Kim, S.-Y. Lee, J.-W. Ryu, I. Kim, J.-H. Han, H.-S. Tae, M. Choi, B. Min. Designing whispering gallery modes via transformation optics. Nat. Photonics, 10, 647-652(2016).
[30] I. Kim, J. Cho, Y. Kim, B. Min, J.-W. Ryu, S. Rim, M. Choi. Husimi functions at gradient index cavities designed by conformal transformation optics. Opt. Express, 26, 6851-6859(2018).
[31] L. Xu, H. Chen. Conformal transformation optics. Nat. Photonics, 9, 15-23(2015).
[32] Y.-J. Qian, Q.-T. Cao, S. Wan, Y.-Z. Gu, L.-K. Chen, C.-H. Dong, Q. Song, Q. Gong, Y.-F. Xiao. Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity. Photon. Res., 9, 364-369(2021).
[33] U. Schlarb, K. Betzler. Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate. Phys. Rev. B, 50, 751-757(1994).