Semiconductor Optoelectronics, Volume. 45, Issue 6, 977(2024)

Research on Delay Optimization Algorithm in 5G Power Virtual Private Network Slicing Based on Deep Reinforcement Learning

ZHANG Dao1, QIN Xiao1, ZHOU Zhinan1, ZOU Zhemin1, ZHONG Taotao1, and TANG Lun2
Author Affiliations
  • 1Information and Telecommunication Branch of State Grid Chongqing Electric Power Com. Ltd, Chongqing, 400014, CHN
  • 2Chongqing University of Posts and Telecommunications, Chongqing 400065, CHN
  • show less
    References(13)

    [1] [1] You X, Wang C X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts [J]. Science China Information Sciences, 2021, 64: 110301.

    [3] [3] Linguaglossa L, Lange S, Pontarelli S, et al. Survey of performance acceleration techniques for network function virtualization [J]. Proceedings of the IEEE, 2019, 107(4): 746-764.

    [5] [5] Chen H, Wang S, Li G, et al. Distributed orchestration of service function chains for edge intelligence in the industrial internet of things [J]. IEEE Trans. on Industrial Informatics, 2021, 18(9): 6244-6254.

    [6] [6] Ding L, Lin Z, Shi X, et al. Target-value-competition-based multi-agent deep reinforcement learning algorithm for distributed nonconvex economic dispatch [J]. IEEE Trans. on Power Systems, 2022, 38(1): 204-217.

    [7] [7] Sun P, Lan J, Li J, et al. Combining deep reinforcement learning with graph neural networks for optimal VNF placement [J]. IEEE Communications Letters, 2020, 25(1): 176-180.

    [8] [8] Chen Z, Li H, Ota K, et al. Deep reinforcement learning for AoI aware VNF placement in multiple source systems [C]// 2022 IEEE Global Communications Conference, 2022: 2873-2878.

    [9] [9] Bunyakitanon M, Vasilakos X, Nejabati R, et al. End-to-end performance-based autonomous VNF placement with adopted reinforcement learning [J]. IEEE Trans. on Cognitive Communications and Networking, 2020, 6(2): 534-547.

    [10] [10] Pei J, Hong P, Pan M, et al. Optimal VNF placement via deep reinforcement learning in SDN/NFV-enabled networks [J]. IEEE J. on Sel. Areas in Communications, 2019, 38(2): 263-278.

    [11] [11] Wang S, Yuen C, Ni W, et al. Multiagent deep reinforcement learning for cost-and-delay-sensitive virtual network function placement and routing [J]. IEEE Trans. on Communications, 2022, 70(8): 5208-5224.

    [12] [12] Tan X, Zhou L, Wang H, et al. Cooperative multi-agent reinforcement-learning-based distributed dynamic spectrum access in cognitive radio networks [J]. IEEE Internet of Things J., 2022, 9(19): 19477-19488.

    [13] [13] Chen Z, Hu J, Min G, et al. Adaptive and efficient resource allocation in cloud datacenters using actor-critic deep reinforcement learning [J]. IEEE Trans. on Parallel and Distributed Systems, 2021, 33(8): 1911-1923.

    [14] [14] Cui Y, Huang X, He P, et al. QoS guaranteed network slicing orchestration for internet of vehicles [J]. IEEE Internet of Things J., 2022, 9(16): 15215-15227.

    [15] [15] Gu L, Zeng D, Li W, et al. Intelligent VNF orchestration and flow scheduling via model-assisted deep reinforcement learning [J]. IEEE J. on Sel. Areas in Communications, 2019, 38(2): 279-291.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Dao, QIN Xiao, ZHOU Zhinan, ZOU Zhemin, ZHONG Taotao, TANG Lun. Research on Delay Optimization Algorithm in 5G Power Virtual Private Network Slicing Based on Deep Reinforcement Learning[J]. Semiconductor Optoelectronics, 2024, 45(6): 977

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 27, 2024

    Accepted: Feb. 28, 2025

    Published Online: Feb. 28, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2024082702

    Topics