Optics and Precision Engineering, Volume. 24, Issue 11, 2821(2016)
Structured measurement matrix by particle swarm optimization for remote sensing compressive imaging
[1] [1] YAN F X, ZHU J B, LIU J Y, et al.. Compressive imaging techniques in optical remote sensing [J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1): 54-62, 96.(in Chinese)
[2] [2] FAN J X, YUE Y J. Development in new concepts and new schemes for military infrared imaging systems [J].Infrared and Laser Engineering, 2011, 40(1): 1-6.(in Chinese)
[3] [3] DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[5] [5] WANG P, RONG ZH B, HE J H, et al.. Polarization imaging based on compressed sensing theory [J]. Infrared and Laser Engineering, 2016, 45(2): 0228005.(in Chinese)
[6] [6] MARCIA R F, HARMANY Z T, WILLETT R M. Compressive coded aperture imaging [C]. Proceeding of SPIE, 2009, 72460G.
[8] [8] CANDES E. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematique, 2008, 346(9): 589-592.
[9] [9] ELAD M. Optimized projections for compressed sensing [J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5703.
[10] [10] ABOLGHASEMI V, FERDOWSI S, SANEI S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing [J]. Signal Processing, 2012, 92(3): 999-1009.
[11] [11] ZHENG H, LI ZH, HUANG Y. An optimization method for CS projection matrix based on quasi-Newton method [J]. Acta Electronica Sinica, 2014, 42(10): 1977-1982.(in Chinese)
[12] [12] RAMIREZ A, ARGUELLO H, ARCE G R, et al.. Spectral image classification from optimal coded-aperture compressive measurements [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3299-3309.
[13] [13] RAMIREZ A, ARCE G R, SADLER B M. Spectral image unmixing from optimal coded-aperture compressive measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 405-415.
[14] [14] GUO J B, WANG R. Constructing circulant measurement matrix through alternating optimizing amplitudes together with chaotic stochastic phases of the matrix generating elements [J]. Acta Physica Sinica, 2015, 64(13): 1-12.(in Chinese)
[15] [15] KITTLE D, CHOI K, WAGADARIKAR A, et al.. Multiframe image estimation for coded aperture snapshot spectral imagers [J]. Appl. Opt., 2010, 49(36): 6824-6833.
[16] [16] STROHMER T, HEATH R W. Grassmannian frames with applications to coding and communication [J]. Applied and Computational Harmonic Analysis, 2003, 14(3): 257-275.
[17] [17] WELCH L. Lower bounds on the maximum cross correlation of signals [J]. IEEE Transactions on Information Theory, 1974, 20(3): 397-399.
[18] [18] KENNEDY J, EBERIIART R C. Particle swarm optimization[C]. IEEE International Conference on Neural Networks, 1995, 4: 1942-1948.
[19] [19] ZHENG Q, FAN Y. Adaptive inertia weight particle swarm optimization[C]. ICAISC, 2006, 4029: 450-459.
Get Citation
Copy Citation Text
TAO Hui-feng, YANG Xing, CHEN Jie, LING Yong-shun, YIN Song-feng. Structured measurement matrix by particle swarm optimization for remote sensing compressive imaging[J]. Optics and Precision Engineering, 2016, 24(11): 2821
Category:
Received: Jul. 14, 2016
Accepted: --
Published Online: Dec. 26, 2016
The Author Email: Hui-feng TAO (taohfeei@163.com)