Matter and Radiation at Extremes, Volume. 3, Issue 1, 28(2018)
Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition
[1] [1] H. Daido, M. Nishiuchi, A.S. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Prog. Phys. 75 (2012) 056401.
[2] [2] A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85 (2013) 751.
[3] [3] S. Kawata, T. Nagashima, M. Takano, T. Izumiyama, D. Kamiyama, et al., Controllability of intense-laser ion acceleration, High Power Laser Sci. Eng. 2 (2014) e4.
[4] [4] Y.J. Gu, Z. Zhu, X.F. Li, Q. Yu, S. Huang, et al., Stable long range proton acceleration driven by intense laser pulse with underdense plasmas, Phys. Plasmas 21 (2014) 063104.
[5] [5] M. Borghesi, D.H. Campbell, A. Schiavi, M.G. Haines, O. Willi, et al., Electric field detection in laser-plasma interaction experiments via the proton imaging technique, Phys. Plasmas 9 (2002) 2214.
[6] [6] S.S. Bulanov, A. Brantov, V. Yu. Bychenkov, V. Chvykov, G. Kalinchenko, et al., Accelerating protons to therapeutic energies with ultra-intense ultraclean and ultra-short laser pulses, Med. Phys. 35 (2008) 1770.
[7] [7] J.S. Loeffler, M. Durane, Charged particle therapyeoptimization, challenges and future directions, Nat. Rev. Clin. Oncol. 10 (2013) 411.
[8] [8] P.K. Patel, A.J. Mackinnon, M.H. Key, T.E. Cowan, M.E. Foord, et al., Isochoric heating of solid-density matter with an ultrafast proton beam, Phys. Rev. Lett. 91 (2003) 125004.
[9] [9] N.A. Tahir, C. Deutsch, V.E. Fortov, V. Gryaznov, D.H.H. Hoffmann, et al., Proposal for the study of thermophysical properties of high-energydensity matter using current and future heavy-ion accelerator facilities at GSI Darmstadt, Phys. Rev. Lett. 95 (2005) 035001.
[10] [10] M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436.
[11] [11] M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, et al., Ignition and high gain with ultrapowerful lasers, Phys. Plasmas 1 (1994) 1626.
[12] [12] S. Pfalzner, An Introduction to Inertial Confinement Fusion, 1Taylor & Francis Group, New York, 2006.
[13] [13] J.J. Honrubia, J.C. Fern andez, M. Temporal, B.M. Hegelich, J. Meyerter- Vehn, Fast ignition of inertial fusion targets by laser-driven carbon beams, Phys. Plasmas 16 (2009) 102701.
[14] [14] N.N. Naumova, T. Schlegel, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, et al., Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses, Phys. Rev. Lett. 102 (2009) 025002.
[15] [15] B.M. Hegelich, D. Jung, B.J. Albright, J.C. Fernandez, D.C. Gautier, et al., Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition, Nucl. Fusion 51 (2011) 083011.
[16] [16] S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, et al., Energetic proton generation in ultra-intense laser-solid interactions, Phys. Plasmas 8 (2001) 542.
[17] [17] M. Passoni, L. Bertagna, A. Zani, Target normal sheath acceleration: theory, comparison with experiments and future perspectives, New J. Phys. 12 (2010) 045012.
[18] [18] Q.L. Dong, Z.M. Sheng, M.Y. Yu, J. Zhang, Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils, Phys. Rev. E 68 (2003) 026408.
[19] [19] L. Yin, B.J. Albright, B.M. Hegelich, J.C. Fernandez, GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner, Laser Part. Beams 24 (2006) 291.
[20] [20] C.A.J. Palmer, N.P. Dover, I. Pogorelsky, M. Babzien, G.I. Dudnikova, et al., Monoenergetic proton beams accelerated by a radiation pressure driven shock, Phys. Rev. Lett. 106 (2011) 014801.
[21] [21] D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R.A. Fonseca, et al., Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams, Nat. Phys. 8 (2012) 95.
[22] [22] M. Liu, S.M. Weng, Y.T. Li, D.W. Yuan, M. Chen, et al., Collisionless electrostatic shock formation and ion acceleration in intense laser interactions with near critical density plasmas, Phys. Plasmas 23 (2016) 113103.
[23] [23] K. Nishihara, H. Amitani, M. Murakami, S.V. Bulanov, T.Zh. Esirkepov, High energy ions generated by laser driven Coulomb explosion of cluster, Nucl. Instr. Meth. A 464 (2001) 98.
[24] [24] M. Murakami, M. Tanaka, Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator, Appl. Phys. Lett. 102 (2013) 163101.
[25] [25] T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Highly efficient relativistic-ion generation in the laser-piston regime, Phys. Rev. Lett. 92 (2004) 175003.
[26] [26] A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, Radiation pressure acceleration of thin foils with circularly polarized laser pulses, New. J. Phys. 10 (2008) 013021.
[27] [27] X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, et al., Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime, Phys. Rev. Lett. 100 (2008) 135003.
[28] [28] B. Qiao, M. Zepf, M. Borghesi, M. Geissler, Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses, Phys. Rev. Lett. 102 (2009) 145002.
[29] [29] M. Chen, A. Pukhov, T.P. Yu, Z.M. Sheng, Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse, Phys. Rev. Lett. 103 (2009) 024801.
[30] [30] T.P. Yu, A. Pukhov, G. Shvets, M. Chen, Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil, Phys. Rev. Lett. 105 (2010) 065002.
[31] [31] S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Absorption of ultraintense laser pulses, Phys. Rev. Lett. 69 (1992) 1383.
[32] [32] J. Denavit, Absorption of high-intensity subpicosecond lasers on solid density targets, Phys. Rev. Lett. 69 (1992) 3052.
[33] [33] A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Laser acceleration of ion bunches at the front surface of overdense plasmas, Phys. Rev. Lett. 94 (2005) 165003.
[34] [34] A.P.L. Robinson, P. Gibbon, M. Zepf, S. Kar, R.G. Evans, et al., Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses, Plasma Phys. control. Fusion 51 (2009) 024004.
[35] [35] T. Schlegel, N. Naumova, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, et al., Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses, Phys. Plasmas 16 (2009) 083103.
[36] [36] F. Wagner, O. Deppert, C. Brabetz, P. Fiala, A. Kleinschmidt, et al., Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets, Phys. Rev. Lett. 116 (2016) 205002.
[37] [37] R. Kodama, K. Takahashi, K.A. Tanaka, M. Tsukamoto, H. Hashimoto, et al., Study of laser-hole boring into overdense plasmas, Phys. Rev. Lett. 77 (1996) 4906.
[38] [38] S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, Clarendon Press, Oxford, 2004.
[39] [39] H. Hora, J. Badziak, M.N. Read, Y.T. Li, T.J. Liang, et al., Fast ignition by laser driven particle beams of very high intensity, Phys. Plasmas 14 (2007) 072701.
[40] [40] S.M. Weng, M. Murakami, H. Azechi, J.W. Wang, N. Tasoko, et al., Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses, Phys. Plasmas 21 (2014) 012705.
[41] [41] J.J. Honrubia, J. Fernandez, B.M. Hegelich, M. Murakami, C.D. Enriquez, Fast ignition driven by quasi-monoenergetic ions: optimal ion type and reduction of ignition energies with an ion beam array, Laser Part. Beams 32 (2014) 419.
[42] [42] J.J. Honrubia, M. Murakami, Ion beam requirements for fast ignition of inertial fusion targets, Phys. Plasmas 22 (2015) 012703.
[43] [43] S. Eliezer, H. Hora, Double layers in laser-produced plasmas, Phys. Rep. 172 (1989) 339.
[44] [44] H. Hora, Laser Plasma Physics, SPIE Press, 2016.
[45] [45] S. Eliezer, N. Nissim, V. Martínez, M. Jos e, K. Mima, et al., Double layer acceleration by laser radiation, Laser Part. Beams 32 (2014) 211-216.
[46] [46] M. Murakami, H. Nagatomo, H. Azechi, F. Ogando, M. Perlado, et al., Innovative ignition scheme for ICF-impact fast ignition, Nucl. Fusion 46 (2006) 99-103.
[47] [47] S.M.Weng,M.Liu, Z.M. Sheng,M.Murakami,M.Chen, et al.,Dense blocks of energetic ions driven by multi-petawatt lasers, Sci. Rep. 6 (2016) 22150.
[48] [48] X. Zhang, B. Shen, Z. Jin, L. Ji, Generation of plasma intrinsic oscillation at the front surface of a target irradiated by a circularly polarized laser pulse, Phys. Plasmas 16 (2009) 033102.
[49] [49] X. Zhang, B. Shen, X. Li, Z.Y. Jin, F.C. Wang, et al., Efficient GeV ion generation by ultraintense circularly polarized laser pulse, Phys. Plasmas 14 (2007) 123108.
[50] [50] S.M. Weng, P. Mulser, Z.M. Sheng, Relativistic critical density increase and relaxation and high-power pulse propagation, Phys. Plasmas 19 (2012) 022705.
[51] [51] S.M. Weng, M. Murakami, P. Mulser, Z.M. Sheng, Ultra-intense laser pulse propagation in plasmas: from classic hole-boring to incomplete hole-boring with relativistic transparency, New J. Phys. 14 (2012) 063026.
[52] [52] H. Xu, W. Yu, M.Y. Yu, A.Y. Wong, Z.M. Sheng, et al., Production of high-density high-temperature plasma by collapsing small solid-density plasma shell with two ultra-intense laser pulses, Appl. Phys. Lett. 100 (2012) 144101; High energy density micro plasma bunch from multiple laser interaction with thin target, Appl. Phys. Lett. 104, 024105(2014).
[53] [53] S.S. Bulanov, E. Esarey, C.B. Schroeder, S.V. Bulanov, T. Zh, Esirkepov, et al., Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure, Phys. Rev. Lett. 114 (2015) 105003.
[54] [54] K.V. Lezhnin, F.F. Kamenets, V.S. Beskin, M. Kando, T. Zh, Esirkepov, et al., Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure, Phys. Plasmas 22 (2015) 033112.
[55] [55] A. Macchi, C. Benedetti, Ion acceleration by radiation pressure in thin and thick targets, Nucl. Instrum. Methods Phys. Res. A 620 (2010) 41.
[56] [56] S. Kar, K.F. Kakolee, M. Cerchez, D. Doria, A. Macchi, et al., Experimental investigation of hole boring and light sail regimes of RPA by varying laser and target parameters, Phys. Rev. Lett. 109 (2012) 185006.
[57] [57] Y.Q. Cui, W.M. Wang, Z.M. Sheng, Y.T. Li, J. Zhang, Quasimonoenergetic proton bunches generation from doped foil targets irradiated by intense lasers, Phys. Plasmas 20 (2013) 024502.
[58] [58] S.M. Weng, M. Muramaki, Z.M. Sheng, Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets, Laser Part. Beams 33 (2015) 103.
[59] [59] X. Ribeyre, Ph Nicola , G. Schurtz, M. Olazabal-Loum e, J. Breil, et al., Compression phase study of the HiPER baseline target, Plasma Phys. control. Fusion 50 (2008) 025007.
[60] [60] V.T. Tikhonchuk, T. Schlegel, C. Regan, M. Temporal, J.-L. Feugeas, et al., Fast ion ignition with ultra-intense laser pulses, Nucl. Fusion 50 (2010) 045003.
[61] [61] A. Zani, D. Dellasega, V. Russo, M. Passoni, Ultra-low density carbon foams produced by pulsed laser deposition, Carbon 56 (2013) 358.
[62] [62] C.S. Lau, J.A. Mol, J.H. Warner, G.A. Briggs, Nanoscale control of graphene electrodes, Phys. Chem. Chem. Phys. 16 (2014) 20398.
[63] [63] G. Rydzek, Q.M. Ji, M. Li, P. Schaaf, J.P. Hill, et al., Electrochemical nanoarchitectonics and layer-by-layer assembly: from basics to future, Nano Today 10 (2015) 138.
[64] [64] D.H.H. Hoffmann, V.E. Fortov, I.V. Lomonosov, V. Mintsev, N.A. Tahir, et al., Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies, Phys. Plasmas 9 (2002) 3651. D.H.H. Hoffmann, A. Blazevic, P. Ni, O. Rosmej, M. Roth, et al.; Present and future perspectives for high energy density physics with intense heavy ion and laser beams, Laser and Particle Beams 23, 47(2005).
[65] [65] H. Hora, G.H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, Laseroptical path to nuclear energy without radioactivity: fusion of hydrogenboron by nonlinear force driven plasma blocks, Opt. Commmun. 282 (2009) 4124.
[66] [66] H. Hora, G.H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, et al., Fusion energy without radioactivity: laser ignition of solid hydrogenboron (11) fuel, Energy Environ. Sci. 3 (2010) 479.
[67] [67] S.M. Weng, Q. Zhao, Z.M. Sheng, W. Yu, S.X. Luan, et al., Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas, Optica 4 (2017) 1086-1091.
[68] [68] Y. Xu, J. Wang, X. Qi, M. Li, Y. Xing, et al., Improving the quality of proton beams via double targets driven by an intense circularly polarized laser pulse, AIP Adv. 6 (2016) 105304.
[69] [69] Y. Xu, J. Wang, X. Qi, M. Li, Y. Xing, et al., Plasma block acceleration via double targets driven by an ultraintense circularly polarized laser pulse, Phys. Plasmas 24 (2017) 033108.
[70] [70] M. Li, J.X. Wang, Y.X. Xu, W.J. Zhu, Study of plasma pressure evolution driven by strong picosecond laser pulse, Phys. Plasmas 24 (2017) 013117.
[71] [71] D.A. Jones, E.L. Kane, P. Lalousis, P. Wiles, H. Hora, Density modification and energetic ion production at relativistic self-focusing of laser beams in plasmas, Phys. Fluids 25 (1982) 2295.
[72] [72] L. Cicchitelli, H. Hora, R. Postle, Longitudinal field components for laser beams in vacuum, Phys. Rev. A 41 (1990) 3727.
[73] [73] D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, R. Wagner, Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons, Science 273 (1996) 472-475.
[74] [74] T. H€auser, W. Scheid, H. Hora, Acceleration of electrons by intense laser pulses in vacuum, Phys. Lett. A 186 (1994) 189-192.
Get Citation
Copy Citation Text
S.M. Weng, Z.M. Sheng, M. Murakami, M. Chen, M. Liu, H.C. Wang, T. Yuan, J. Zhang. Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition[J]. Matter and Radiation at Extremes, 2018, 3(1): 28
Category: Review article
Received: Apr. 30, 2017
Accepted: Sep. 8, 2017
Published Online: May. 3, 2018
The Author Email: Weng S.M. (wengsuming@gmail.com)