Journal of Geo-information Science, Volume. 22, Issue 5, 1073(2020)

Spatiotemporal Variability of Urban Management Events based on the Bayesian Spatiotemporal Model

Wenqian DONG1...1, Liang DONG2,2,3,3, Lin XIANG1,1,*, Haijun TAO1,1, Chuanhu ZHAO4,4, and Hanbing QU2,2,33 |Show fewer author(s)
Author Affiliations
  • 1.中国计量大学信息工程学院,杭州 310018
  • 1College of Information Engineering, China Jiliang University, Hangzhou 310018, China
  • 2.北京市科学技术研究院,北京 100089
  • 2Beijing Academy of Science and Technology, Beijing 100089, China
  • 3.北京市新技术应用研究所,北京 100094
  • 3Beijing Institute of New Technology Applications, Beijing 100094, China
  • 4.河北工业大学人工智能与数据科学学院,天津 300401
  • 4School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
  • show less
    References(31)

    [1] [1] 王家耀. 大数据时代的智慧城市[J]. 测绘科学, 2014,39(5):3-7. [ Wang JY. Smart city in the era of big data[J]. Science of Surveying and Mapping, 2014,39(5):3-7. ] [ Wang J Y. Smart city in the era of big data[J]. Science of Surveying and Mapping, 2014,39(5):3-7. ]

    [2] [2] 佘冰, 朱欣焰, 呙维, 等. 基于空间点模式分析的城市管理事件空间分布及演化:以武汉市江汉区为例[J]. 地理科学进展, 2013,32(6):924-931. [ SheB, Zhu XY, GuoW, et al. Spatial distribution and evolution of city management events based on the spatial point pattern analysis: A case study of Jianghan district, Wuhan city[J]. Progress in Geography, 2013,32(6):924-931. ] [ She B, Zhu X Y, Guo W, et al. Spatial distribution and evolution of city management events based on the spatial point pattern analysis: A case study of Jianghan district, Wuhan city[J]. Progress in Geography, 2013,32(6):924-931. ]

    [3] [3] 靖常峰, 付艳丽, 戴培培, 等. 近邻指数的城管案件全局分布模式分析[J]. 测绘科学, 2017,42(6):76-81. [ Jing CF, Fu YL, Dai PP, et al. Spatial pattern analysis on global distribution of urban management case based on nearest index[J]. Science of Surveying and Mapping, 2017,42(6):76-81. ] [ Jing C F, Fu Y L, Dai P P, et al. Spatial pattern analysis on global distribution of urban management case based on nearest index[J]. Science of Surveying and Mapping, 2017,42(6):76-81. ]

    [4] [4] 伏家云, 靖常峰, 杜明义, 等. 参数优化DBSCAN算法的城管案件聚类分析[J]. 测绘科学, 2018,43(8):135-140. [ Fu JY, Jing CF, Du MY, et al. Urban management case spatial clustering analysis based on a parameter optimized DBSCAN algorithm[J]. Science of Surveying and Mapping, 2018,43(8):135-140. ] [ Fu J Y, Jing C F, Du M Y, et al. Urban management case spatial clustering analysis based on a parameter optimized DBSCAN algorithm[J]. Science of Surveying and Mapping, 2018,43(8):135-140. ]

    [5] et al[M]. Bayesian data analysis(2013).

    [6] et alOn fitting spatio-temporal disease mapping models using approximate Bayesian inference[J]. Statistical Methods in Medical Research, 23, 507-530(2014).

    [8] [M]. Bayesian disease mapping: Hierarchical modeling in spatial epidemiology(2013).

    [9] [M]. Hierarchical modeling and analysis for spatial data(2014).

    [10] [10] 吴北平, 杨典, 王劲峰, 等. 利用贝叶斯时空模型分析山东省手足口病时空变化及影响因素[J]. 地球信息科学学报, 2016,18(12):1645-1652.

    [13] [13] 关雪峰, 曾宇媚. 时空大数据背景下并行数据处理分析挖掘的进展及趋势[J]. 地理科学进展, 2018,37(10):1314-1327.

    [14] [14] 刘玲, 李钢, 杨兰, 等. 深圳市快递自提点的空间分布特征与影响因素[J]. 地球信息科学, 2019,21(8):1240-1253. [ LiuL, LiG, YangL, et al. Spatial distribution characteristics and influencing factors of the delivery sites in Shenzhen[J]. Journal of Geo-information Science, 2019,21(8):1240-1253. ] [ Liu L, Li G, Yang L, et al. Spatial distribution characteristics and influencing factors of the delivery sites in Shenzhen[J]. Journal of Geo-information Science, 2019,21(8):1240-1253. ]

    [15] et alMulticollinearity in regression analyses conducted in epidemiologic studies[J]. Epidemiology (Sunnyvale, Calif), 6, 227(2016).

    [16] Bayesian image restoration, with two applications in spatial statistics[J]. Annals of the Institute of Statistical Mathematics, 43, 1-20(1991).

    [17] Spatial and spatio-temporal Bayesian models with R-INLA[M]. London: John Wiley and Sons(2015).

    [18] Spatial interaction and the statistical analysis of lattice systems[J]. Journal of the Royal Statistical Society: Series B(Methodological), 36, 192-225(1974).

    [19] et alSpatial autocorrelation and autoregressive models in ecology[J]. Ecological Monographs, 72, 445-463(2002).

    [20] et alRisk assessment and mapping of hand, foot, and mouth disease at the county level in mainland China using spatiotemporal zero-inflated Bayesian hierarchical models[J]. International Journal of Environmental Research and Public Health, 15, 1476(2018).

    [21] et alSpatiotemporal distribution of hand, foot, and mouth disease in Guangdong province, China and potential predictors, 2009-2012[J]. International Journal of Environmental Research and Public Health, 16, 1191(2019).

    [22] [22] 王劲峰, 廖一兰, 刘鑫. 空间数据分析教程(第二版)[M]. 北京: 科学出版社, 2019. [ Wang JF, Liao YL, LiuX.2019. Spatial data analysis tutorial(second edition)[M]. Beijing: Science Press, 2019. ] [ Wang J F, Liao Y L, Liu X. 2019. Spatial data analysis tutorial(second edition)[M]. Beijing: Science Press, 2019. ]

    [23] Spatio-temporal disease mapping using INLA[J]. Environmetrics, 22, 725-734(2011).

    [24] et alBayesian measures of model complexity and fit[J]. Journal of the Royal Statistical Society:Series B(Statistical Methodology), 64, 583-639(2002).

    [25] Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations[J]. Journal of the Royal Statistical Society: Series B(Statistical Methodology), 71, 319-392(2009).

    [26] et alInterpreting posterior relative risk estimates in disease-mapping studies[J]. Environmental Health Perspectives, 112, 1016-1025(2004).

    [27] [27] 林文棋, 陈会宴, 谢盼, 等. 基于多源数据的北京市朝阳区人口时空格局评估与预测[J]. 地球信息科学学报, 2018,20(10):1467-1477. [ Lin WQ, Chen HY, XieP, et al. Spatial-temporal variation evaluation and prediction of population in Chaoyang district of Beijing based on multisource data[J]. Journal of Geo-information Science, 2018,20(10):1467-1477. ] [ Lin W Q, Chen H Y, Xie P, et al. Spatial-temporal variation evaluation and prediction of population in Chaoyang district of Beijing based on multisource data[J]. Journal of Geo-information Science, 2018,20(10):1467-1477. ]

    [28] Bayesian modelling of inseparable space-time variation in disease risk[J]. Statistics in Medicine, 19, 2555-2567(2000).

    [29] The modifiable areal unit problem//Concepts and Techniques in Modern Geography[M]. Norwich: Geo Books(1984).

    [30] [30] 彭建, 徐飞雄. 不同格网尺度下的黄山市生境质量差异分析[J]. 地球信息科学学报, 2019,21(6):887-897. [ PengJ, Xu FX. Effect of grid size on habitat quality assessment: A case study of Huangshan city[J]. Journal of Geo-information Science, 2019,21(6):887-897. ] [ Peng J, Xu F X. Effect of grid size on habitat quality assessment: A case study of Huangshan city[J]. Journal of Geo-information Science, 2019,21(6):887-897. ]

    [31] [31] 李志林, 王继成, 谭诗腾, 等. 地理信息科学中尺度问题的30年研究现状[J]. 武汉大学学报·信息科学版, 2018,43(12):2233-2242. [ Li ZL, Wang JC, Tan ST, et al. Scale in Geo-information Science: An overview of thirty-year development[J]. Geomatics and Information Science of Wuhan University, 2018,43(12):2233-2242. ] [ Li Z L, Wang J C, Tan S T, et al. Scale in Geo-information Science: An overview of thirty-year development[J]. Geomatics and Information Science of Wuhan University, 2018,43(12):2233-2242. ]

    Tools

    Get Citation

    Copy Citation Text

    Wenqian DONG, Liang DONG, Lin XIANG, Haijun TAO, Chuanhu ZHAO, Hanbing QU. Spatiotemporal Variability of Urban Management Events based on the Bayesian Spatiotemporal Model[J]. Journal of Geo-information Science, 2020, 22(5): 1073

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 30, 2019

    Accepted: --

    Published Online: Nov. 12, 2020

    The Author Email: XIANG Lin (xianglin@cjlu.edu.cn)

    DOI:10.12082/dqxxkx.2020.190413

    Topics