High Power Laser and Particle Beams, Volume. 34, Issue 1, 011005(2022)
Thermal effect and its suppression in high-power continuous-wave fiber laser system
[1] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 3, 1182-1186(1964).
[2] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 12, 6088-6092(2004).
[3] [3] O''Conn M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]Conference on Lasers ElectroOptics 2009. Optical Society of America, 2009: CThA3.
[4] [4] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]CLEO: Applications Technology 2013. Optical Society of America, 2013: AF2J. 1.
[5] Zhan H, Peng K, Liu S, et al. Pump-gain integrated functional laser fiber towards 10 kW-level high-power applications[J]. Laser Physics Letters, 15, 095107(2018).
[9] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[10] Brown D C, Hoffman H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE Journal of Quantum Electronics, 37, 207-217(2001).
[11] Brilliant N A, Lagonik K. Thermal effects in a dual-clad ytterbium fiber laser[J]. Optics Letters, 26, 1669-1671(2001).
[12] Canat G, Mollier J C, Jaouën Y, et al. Evidence of thermal effects in a high-power Er 3+–Yb 3+ fiber laser[J]. Optics Letters, 30, 3030-3032(2005).
[13] [13] Beier F, Heinzig M, Walbaum T, et al. Determination of thermal load from ce temperature measurements in single mode ytterbiumdoped fiber amplifiers[C]Advanced Solid State Lasers. Optical Society of America, 2015: ATh2A. 23.
[15] Fan Yuanyuan, He Bing, Zhou Jun, et al. Thermal effects in kilowatt all-fiber MOPA[J]. Optics Express, 19, 15162-15172(2011).
[18] [18] TerMikirtychev V. Fundamentals of fiber lasers fiber amplifiers[M]. Cham: Springer, 2019.
[19] Paschotta R, Nilsson J, Barber P R, et al. Lifetime quenching in Yb-doped fibres[J]. Optics Communications, 136, 375-378(1997).
[20] Jelger P, Engholm M, Norin L, et al. Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber[J]. Journal of the Optical Society of America B, 27, 338-342(2010).
[21] Li Nanxi, Yoo S, Yu Xia, et al. Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers[J]. IEEE Photonics Technology Letters, 26, 115-118(2014).
[23] Chen Gui, Xie Lu, Wang Yibo, et al. Photodarkening-induced absorption and fluorescence changes in Yb fibers[J]. Chinese Physics Letters, 30, 104208(2013).
[26] Jeong Y, Baek S, Dupriez P, et al. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection[J]. Optics Express, 16, 19865-19871(2008).
[27] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers[J]. Optics Express, 19, 23965-23980(2011).
[28] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).
[29] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2kW[J]. Optics Letters, 36, 3118-3120(2011).
[30] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 19, 13218-13224(2011).
[31] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 20, 15710-15722(2012).
[32] Stutzki F, Otto H J, Jansen F, et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Optics Letters, 36, 4572-4574(2011).
[33] [33] Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]FiberBased Technologies Applications 2014. Optical Society of America, 2014: FTh2F. 2.
[36] Hejaz K, Shayganmanesh M, Rezaei-Nasirabad R, et al. Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers[J]. Optics Letters, 42, 5274-5277(2017).
[37] [37] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]Proceedings of SPIE 8601, Fiber Lasers X: Technology, Systems, Applications. SPIE, 2013: 860108.
[38] [38] Brar K, SavageLeuchs M, Henrie J, et al. Threshold power fiber degradation induced modal instabilities in highpower fiber amplifiers based on large mode area fibers[C]Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, Applications. SPIE, 2014: 89611R.
[39] [39] Otto H J, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffractionlimited output power of fiber lasers[C]Advanced Solid State Lasers 2014. Optical Society of America, 2014: AM5A. 44.
[40] Hejaz K, Norouzey A, Poozesh R, et al. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 24, 025102(2014).
[42] Fey A, Ulrich S, Jahn S, et al. Numerical analysis of temperature distribution during laser deep welding of duplex stainless steel using a two-beam method[J]. Welding in the World, 64, 623-632(2020).
[43] Fan Yuanyuan, He Bing, Zhou Jun, et al. Efficient heat transfer in high-power fiber lasers[J]. Chinese Optics Letters, 10, 111401(2012).
[45] Li L, Li H, Qiu T, et al. 3-dimensional thermal analysis and active cooling of short-length high-power fiber lasers[J]. Optics Express, 13, 3420-3428(2005).
[46] Liu Shuang, Zhan Huan, Peng Kun, et al. Fabrication and laser performance of triple-clad Yb-doped aluminophosphosilicate fiber[J]. Optical Fiber Technology, 46, 297-301(2018).
[47] [47] Laperle P, Paré C, Zheng Huimin, et al. Ybdoped LMA tripleclad fiber f power amplifiers[C]Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, Applications. SPIE, 2007: 645308.
[48] Kalyoncu S K, Mete B, Yenıay A. Diode-pumped triple-clad fiber MOPA with an output power scaling up to 4.67 kW[J]. Optics Letters, 45, 1870-1873(2020).
[51] Ripin D J, Goldberg L. High efficiency side-coupling of light into optical fibres using imbedded v-grooves[J]. Electronics Letters, 31, 2204-2205(1995).
[52] Koplow J P, Moore S W, Kliner D A V. A new method for side pumping of double-clad fiber sources[J]. IEEE Journal of Quantum Electronics, 39, 529-540(2003).
[53] [53] Hakimi F, Hakimi H. Side pumped optical amplifiers lasers: 6370297[P]. 20020409.
[54] Herda R, Liem A, Schnabel B, et al. Efficient side-pumping of fibre lasers using binary gold diffraction gratings[J]. Electronics Letters, 39, 276-277(2003).
[55] [55] Codemard C, YlaJarkko K, Singleton J, et al. Low noise, intelligent cladding pumped Lb EDFA[C]Proceedings of the 28th European Conference on Optical Communication. IEEE, 2002: 12.
[56] [56] Nman S, Zervas M N, Appleyard A, et al. Latest development of highpower fiber lasers in SPI[C]Proceedings of SPIE 5335, Fiber Lasers: Technology, Systems, Applications. SPIE, 2004: 229237.
[57] [57] Gapontsev V, Gapontsev D, Platonov N, et al. 2 kW CW ytterbium fiber laser with recd diffractionlimited brightness[C]Proceedings of 2005 Conference on Lasers ElectroOptics Europe. IEEE, 2005: 508.
[58] [58] Stiles E. New developments in IPG fiber laser technology[C]Proceedings of the 5th International Wkshop on Fiber Lasers. 2009: 2.
[59] [59] Ferin A, Gapontsev V, Fomin V, et al. 17 kW CW laser with 50 m delivery[C]Proceedings of the 6th Int. Symp. on HighPower Fiber Lasers Their Applications, IPG Photonics Cpation. 2012.
[60] Huang Zhihe, Cao Jianqiu, Guo Shaofeng, et al. The characteristics of pump light in side-coupled cladding-pumped fibers[J]. Optical Fiber Technology, 19, 293-297(2013).
[61] Huang Zhihe, Cao Jianqiu, Guo Shaofeng, et al. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers[J]. Applied Optics, 53, 2187-2195(2014).
[62] Huang Zhihe, Cao Jianqiu, An Yingye, et al. A kilowatt all-fiber cascaded amplifier[J]. IEEE Photonics Technology Letters, 27, 1683-1686(2015).
[64] Ying Hanyuan, Yu Yu, Cao Jianqiu, et al. 2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator[J]. Laser Physics Letters, 14, 065102(2017).
[67] [67] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. 3kilowatt allfiber distributed sidepumped oscillat with high SRS suppression[C]Proceedings of 2018 Asia Communications Photonics Conference (ACP). 2018.
[68] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. Experimental investigations on multi-kilowatt all-fiber distributed side-pumped oscillators[J]. Laser Physics, 29, 075103(2019).
[70] Zhan Huan, Wang Yuying, Peng Kun, et al. 2 kW (2+ 1) GT-wave fiber amplifier[J]. Laser Physics Letters, 13, 045103(2016).
[71] Zhan Huan, Liu Qinyong, Wang Yuying, et al. 5kW GTWave fiber amplifier directly pumped by commercial 976nm laser diodes[J]. Optics Express, 24, 27087-27095(2016).
[72] [72] Zhan Huan, Peng Kun, Wang Yuying, et al. 6kW GTWave fiber amplifier[C]Asia Communications Photonics Conference 2017. Optical Society of America, 2017: M1A. 3.
[73] [73] Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kWlevel pumpgain integrated functional laser fiber[C]Proceedings of 2018 Asia Communications Photonics Conference (ACP). IEEE, 2018: 13.
[74] [74] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. 4kilowatt allfiber distributed sidepumped oscillats[C]Advanced Solid State Lasers 2018. Optical Society of America, 2018: AM6A. 18.
[76] [76] Peng Kun, Zhan Huan, Wang Xiaolong, et al. (8+1) pumpgain integrated functional fiber oscillat[C]Asia Communications Photonics Conference 2018. Optical Society of America, 2018: Su1A. 3.
Get Citation
Copy Citation Text
Aoxiang Lin, Kun Peng, Juan Yu, Li Ni, Xiaojun Dai, Heng Xiang. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34(1): 011005
Category: Thermal and Mechanical Effects of Laser
Received: Jul. 31, 2021
Accepted: --
Published Online: Jan. 25, 2022
The Author Email: