Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2197(2023)
Electronic and Thermal Transport Properties of BaBi2Se4 Compound
[1] [1] COLE T. Thermoelectric energy conversion with solid electrolytes[J]. Science, 1983, 221(4614): 915-920.
[2] [2] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
[3] [3] SALES B C. Smaller is cooler[J]. Science, 2002, 295(5558): 1248-1249.
[4] [4] IOFFE A F. Semiconductor Thermoelements, and Thermoelectric Cooling[M]. [Rev. and supplemented for the English ed. London: Infosearch, 1957.
[5] [5] PEI Y Z, GIBBS Z M, GLOSKOVSKII A, et al. Optimum carrier concentration in n-type PbTe thermoelectrics[J]. Adv Energy Mater, 2014, 4(13): 1400486.
[6] [6] WANG H, LALONDE A D, PEI Y Z, et al. The criteria for beneficial disorder in thermoelectric solid solutions[J]. Adv Funct Mater, 2013, 23(12): 1586-1596.
[7] [7] PEI Y Z, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.
[8] [8] FISCHETTI M V, LAUX S E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys[J]. J Appl Phys, 1996, 80(4): 2234-2252.
[9] [9] TANG Y L, GIBBS Z M, AGAPITO L A, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites[J]. Nat Mater, 2015, 14(12): 1223-1228.
[10] [10] LIU W, TAN X J, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-TypeMg2Si1-xSnxSolid solutions[J]. Phys Rev Lett, 2012, 108(16): 166601.
[11] [11] LIN S Q, LI W, LI S S, et al. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons[J]. Joule, 2017, 1(4): 816-830.
[12] [12] KUROSAKI K, KOSUGA A, MUTA H, et al. Ag9TlTe5: a high-performance thermoelectric bulk material with extremely low thermal conductivity[J]. Appl Phys Lett, 2005, 87(6): 061919.
[13] [13] ZHANG X Y, CHEN Z W, LIN S Q, et al. Promising thermoelectric Ag5-δTe3 with intrinsic low lattice thermal conductivity[J]. ACS Energy Lett, 2017, 2(10): 2470-2477.
[14] [14] LI W, LIN S Q, GE B H, et al. Low sound velocity contributing to the high thermoelectric performance of Ag8 SnSe6[J]. Adv Sci, 2016, 3(11): 1600196.
[15] [15] KEIBER T, BRIDGES F. Modeling correlated motion in filled skutterudites[J]. Phys Rev B, 2015, 92(13): 134111.
[16] [16] KIM S I, LEE K H, MUN H A, et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 2015, 348(6230): 109-114.
[17] [17] CHEN Z W, GE B H, LI W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics[J]. Nat Commun, 2017, 8(1): 1-8.
[18] [18] WU Y X, CHEN Z W, NAN P F, et al. Lattice strain advances thermoelectrics[J]. Joule, 2019, 3(5): 1276-1288.
[19] [19] XIAO Y W, WU Y X, NAN P F, et al. Cu interstitials enable carriers and dislocations for thermoelectric enhancements in n-PbTe0.75Se0.25[J]. Chem, 2020, 6(2): 523-537.
[21] [21] MAKONGO J P A, MISRA D K, ZHOU X Y, et al. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-heusler alloys[J]. J Am Chem Soc, 2011, 133(46): 18843-18852.
[22] [22] POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.
[23] [23] HU C L, XIA K Y, FU C G, et al. Carrier grain boundary scattering in thermoelectric materials[J]. Energy Environ Sci, 2022, 15(4): 1406-1422.
[24] [24] ZHU B, LIU X X, WANG Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials[J]. Energy Environ Sci, 2020, 13(7): 2106-2114.
[25] [25] WEI J T, YANG L L, MA Z, et al. Review of current high-ZT thermoelectric materials[J]. J Mater Sci, 2020, 55(27): 12642-12704.
[26] [26] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.
[27] [27] Shang H, Liang Z, Xu C, et al.N-Type Mg3Sb2-xBix alloys as promising thermoelectric materials[J].Research,2020, 2020.
[28] [28] FENG T, WANG P S, HAN Z J, et al. Giant transverse thermoelectric effect induced by topological transition in polycrystalline Dirac semimetal Mg3Bi2[J]. Energy Environ Sci, 2023, 16(4): 1560-1568.
[29] [29] SHU R, HAN Z J, ELSUKOVA A, et al. Solid-state Janus nanoprecipitation enables amorphous-like heat conduction in crystalline Mg3Sb2-based thermoelectric materials[J]. Adv Sci, 2022, 9(25): 2270157.
[30] [30] JIANG M, FU Y T, ZHANG Q H, et al. High-efficiency and reliable same-parent thermoelectric modules using Mg3Sb2-based compounds[J]. Natl Sci Rev, 2023, 10(6): nwad095.
[31] [31] YU J J, FU C G, LIU Y T, et al. Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials[J]. Adv Energy Mater, 2018, 8(1): 1701313.
[32] [32] BUENO VILLORO R, ZAVANELLI D, JUNG C, et al. Grain boundary phases in NbFeSb half-heusler alloys: a new avenue to tune transport properties of thermoelectric materials[J]. Adv Energy Mater, 2023, 13(13): 2204321.
[33] [33] XIAO Y, XU L Q, HONG T, et al. Ultrahigh carrier mobility contributes to remarkably enhanced thermoelectric performance in n-type PbSe[J]. Energy Environ Sci, 2022, 15(1): 346-355.
[34] [34] JIANG B B, WANG W, LIU S X, et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics[J]. Science, 2022, 377(6602): 208-213.
[35] [35] JIANG B B, YU Y, CUI J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance[J]. Science, 2021, 371(6531): 830-834.
[36] [36] SU L Z, WANG D Y, WANG S N, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling[J]. Science, 2022, 375(6587): 1385-1389.
[37] [37] LIU C Y, ZHANG Z W, PENG Y, et al. Charge transfer engineering to achieve extraordinary power generation in GeTe-based thermoelectric materials[J]. Sci Adv, 2023, 9(17): eadh0713.
[38] [38] YOU L, ZHANG J Y, PAN S S, et al. Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe[J]. Energy Environ Sci, 2019, 12(10): 3089-3098.
[39] [39] WU M, CUI H H, CAI S T, et al. Weak electron-phonon coupling and enhanced thermoelectric performance in n-type PbTe-Cu2 Se via dynamic phase conversion[J]. Adv Energy Mater, 2023, 13(1): 2203325.
[40] [40] ZHANG X Y, BU Z L, LIN S Q, et al. GeTe thermoelectrics[J]. Joule, 2020, 4(5): 986-1003.
[41] [41] YU Y, ZHOU C J, GHOSH T, et al. Doping by design: enhanced thermoelectric performance of GeSe alloys through metavalent bonding[J]. Adv Mater, 2023, 35(19): 2300893
[42] [42] ZHANG C H, YAN G, WANG Y B, et al. Grain boundary complexions enable a simultaneous optimization of electron and phonon transport leading to high-performance GeTe thermoelectric devices[J]. Adv Energy Mater, 2023, 13(3): 2203361.
[43] [43] HE W K, ANG R, ZHAO L D. Remarkable electron and phonon transports in low-cost SnS: A new promising thermoelectric material[J]. Sci China Mater, 2022, 65(5): 1143-1155.
[44] [44] WANG Y J, LONG Z, CHENG Y, et al. Chemical bonding engineering for high-symmetry Cu2S-based materials with high thermoelectric performance[J]. Mater Today Phys, 2023, 32: 101028.
[45] [45] ZHOU Z F, HUANG Y, WEI B, et al. Compositing effects for high thermoelectric performance of Cu2Se-based materials[J]. Nat Commun, 2023, 14(1): 1-9.
[46] [46] LONG Z, WANG Y J, SUN X L, et al. Band engineering of the second phase to reach high thermoelectric performance in Cu2Se-based composite material[J]. Adv Mater, 2023, 35(17): e2210345.
[47] [47] WU H, SHI X L, DUAN J G, et al. Advances in Ag2Se-based thermoelectrics from materials to applications[J]. Energy Environ Sci, 2023, 16(5): 1870-1906.
[48] [48] ZHU T, BAI H, ZHANG J, et al. Realizing high thermoelectric performance in Sb-doped Ag2Te compounds with a low-temperature monoclinic structure[J]. ACS Appl Mater Interfaces, 2020, 12(35): 39425-39433.
[49] [49] YANG Q Y, YANG S Q, QIU P F, et al. Flexible thermoelectrics based on ductile semiconductors[J]. Science, 2022, 377(6608): 854-858.
[50] [50] WEI T R, QIU P F, ZHAO K P, et al. Ag2 Q-based (Q=S, Se, Te) silver chalcogenide thermoelectric materials[J]. Adv Mater, 2023, 35(1): 2110236.
[51] [51] WEI T R, JIN M, WANG Y C, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe[J]. Science, 2020, 369(6503): 542-545.
[52] [52] YANG J Y, MA Z, LUO Y B, et al. Enhancing the solubility of Mn in AgSbSe2 for high thermoelectric performance through entropy engineering[J]. J Mater Chem A, 2023, 11(25): 13720-13728.
[53] [53] ROYCHOWDHURY S, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2[J]. Science, 2021, 371(6530): 722-727.
[54] [54] LI M, WULIJI H, ZHOU Z Y, et al. Co-alloying of Sn and Te enables high thermoelectric performance in Ag9GaSe6[J]. J Mater Chem A, 2023, 11(20): 10901-10911.
[55] [55] ZHENG Y Y, LIU C Y, MIAO L, et al. Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity[J]. Nano Energy, 2019, 59: 311-320.
[56] [56] CHUNG D Y, HOGAN T, BRAZIS P, et al. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications[J]. Science, 2000, 287(5455): 1024-1027.
[57] [57] KANATZIDIS M. A2Bi8Se13 (A: Rb, Cs), CsBi3.67Se6, and BaBi2Se4: New ternary semiconducting bismuth selenides[J]. Chemistry of Materials, 2001, 13(2): 622-633.
[58] [58] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15-50.
[59] [59] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
[60] [60] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B Condens Matter, 1994, 50(24): 17953-17979.
[61] [61] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188-5192.
[62] [62] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scr Mater, 2015, 108: 1-5.
[63] [63] ZHOU Y M, ZHAO L D. Thermoelectric transport properties of BaBiTe3-based materials[J]. J Solid State Chem, 2017, 249: 131-135.
[64] [64] LI J, CHEN Z W, ZHANG X Y, et al. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics[J]. Adv Sci, 2017, 4(12): 1700341.
Get Citation
Copy Citation Text
WU Yixuan, LI Wen, XIAO Youwei, QIN Cheng, YU Hulei, Chen Yue, PEI Yanzhong. Electronic and Thermal Transport Properties of BaBi2Se4 Compound[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2197
Category:
Received: Mar. 31, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Yixuan WU (769625114@qq.com)
CSTR:32186.14.