BLASTING, Volume. 41, Issue 1, 196(2024)
Research on Fragment Size Identification Method of Blasting Pile based on Deep Learning Technology
[1] [1] ZHANG Guo-ying,LIU Guan-zhou,ZHU Hong,et al.Segmentation algorithm of complex ore images based on templates transformation and reconstruction[J].International Journal of Minerals Metallurgy and Materials,2011,18(4):385-389.
[2] [2] KE Dong,JIANG Da-lin.Automated estimation of ore size distributions based on machine vision[J].Lecture Notes in Electrical Engineering,2014,238 LNEE(null):1125-1131.
[3] [3] CHEN Yi,WANG Ming-jing,AA Heidari,et al.Multi-threshold image segmentation using a multi-strategy shuffled frog leaping algorithm[J].Expert Systems with Application,2022(May):194.Doi:10.1016/J.ESWA.2022.116511.
[5] [5] XIE Bo,SHI Fu-qiang,ZHAO Jian-cai,et al.Method for automatic identification and block size feature extraction of blasting rock blocks[J].Blasting,2019,36(3):43-49.(in Chinese)
[6] [6] OLAF Ronneberger,PHILIPP Fischer,THOMAS Brox.U-Net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention,2015,9351:234-241.
[7] [7] XIAO Dong,LIU Xi-wen,LE Ba-tuan,et al.An ore image segmentation method based on RDU-Net model[J].Sensors,2020,20(17):49-79 .Doi:10.3390/s20174979.
[8] [8] YANG Hao,HUANG Chao,WANG Long,et al.An improved encoder-decoder network for ore image segmentation[J].IEEE sensors journal,2021,21(10):11469-11475 .
[9] [9] LIU Yang,ZHANG Ze-lin,LIU Xiang,et al.Efficient image segmentation based on deep learning for mineral image classification[J].Advanced Powder Technology,2021,32(10):3885-3903.
[10] [10] FILIPPO Michel Pedro,DA Fonseca Martins Gomes Otvio,DA Costa Gilson Alexandre Ostwald Pedro,et al.Deep learning semantic segmentation of opaque and non-opaque minerals from epoxy resin in reflected light microscopy images[J].Minerals Engineering,2021,170:100-107.
[11] [11] YANG Z,DING H,GUO L,et al.Superpixel image segmentation-based particle size distribution analysis of fragmented rock[J].IEEE Access,2021,9:59048-59058.
[12] [12] KOH Edwin J Y,AMINI Eiman,McLACHLAN Geoffrey J,et al.Utilising convolutional neural networks to perform fast automated modal mineralogy analysis for thin-section optical microscopy[J].Minerals Engineering,2021,173:107230.Doi:10.1016/J.MINENG.2021.107-230.
[13] [13] ZHOU Xiao-xiong,GONG Qiu-ming,LIU Yong-qiang,et al.Automatic segmentation of tbm muck images via a deep-learning approach to estimate the size and shape of rock chips
[14] [14] WANG Ying-da,SHABANINEJAD Mehdi,ARMSTRONG Ryan T,et al.Deep neural networks for improving physical accuracy of 2d and 3d multi-mineral segmentation of rock micro-ct images[J].Applied Soft Computing,2021,104:107185.
[15] [15] LIU Xiao-bo,ZHANG Yu-wei,JING Hong-di,et al.Ore image segmentation method using U-Net and Res_Unet convolutional networks[J].RSC Advances,2020,10(16):9396-9406.Doi:10.1088/1742-6596/1611/1/012062.
[17] [17] ZHANG Yongfu,ZHANG Peng.Design and Implementation of a Coin Recognition System Based on Python[J].Software Guide,2017,16(10):129-131.(in Chinese)
Get Citation
Copy Citation Text
CHEN Li-jun, CAI Guo-qiang, ZHANG Wen-bin. Research on Fragment Size Identification Method of Blasting Pile based on Deep Learning Technology[J]. BLASTING, 2024, 41(1): 196
Category:
Received: Oct. 12, 2021
Accepted: --
Published Online: Aug. 15, 2024
The Author Email: Li-jun CHEN (632545110@qq.com)