Acta Optica Sinica, Volume. 41, Issue 1, 0111001(2021)

Optical Super-Resolution Imaging Based on Frequency Shift

Xiang Hao1, Qing Yang1, Cuifang Kuang1,2, and Xu Liu1,2、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
  • show less
    References(82)

    [2] Born M, Wolf E, Hecht E. Principles of optics electromagnetic theory of propagation, interference and diffraction of light[J]. Physics Today, 53, 77-78(2000).

    [3] Mansfield S M, Kino G S. Solid immersion microscope[J]. Applied Physics Letters, 57, 2615-2616(1990).

    [4] Hell S. Stelzer E H K. Properties of a 4Pi confocal fluorescence microscope[J]. Journal of the Optical Society of America A, 9, 2159-2166(1992).

    [5] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [6] Blom H, Widengren J. Stimulated emission depletion microscopy[J]. Chemical Reviews, 117, 7377-7427(2017).

    [8] Möckl L, Lamb D C, Bräuchle C. Super-resolved fluorescence microscopy: Nobel prize in chemistry 2014 for eric betzig, stefan hell, and William E. moerner[J]. Angewandte Chemie International Edition, 53, 13972-13977(2014).

    [9] Hao X. Research on the realization of far-field optical nanoscopy using manipulation of light field[D]. Hangzhou: Zhejiang University(2014).

    [11] Cutrona L. Synthetic aperture radar[J]. Radar Handbook, 2, 2333-2346(1990).

    [12] Schwarz C J, Kuznetsova Y. Brueck S R J. Imaging interferometric microscopy[J]. Optics Letters, 28, 1424-1426(2003).

    [14] Kim M, Choi Y, Fang-Yen C et al. High-speed synthetic aperture microscopy for live cell imaging[J]. Optics Letters, 36, 148-150(2011).

    [15] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 9, 2501-2504(1970).

    [16] Paladuga S R C, Prithvi M R. Synthesis of circular array antenna for sidelobe level and aperture size control using flower pollination algorithm[J]. International Journal of Antennas and Propagation, 2015, 1-9(2015).

    [17] Turpin T M, Gesell L H, Lapides J et al. Theory of the synthetic aperture microscope[J]. Proceedings of SPIE, 2566, 230-240(1995).

    [22] Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).

    [23] Thibault P, Dierolf M, Menzel A et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).

    [25] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [27] Huang X S, Fan J C, Li L J et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).

    [29] Demmerle J, Innocent C, North A J et al. Strategic and practical guidelines for successful structured illumination microscopy[J]. Nature Protocols, 12, 988-1010(2017).

    [31] Jost A, Tolstik E, Feldmann P et al. Optical sectioning and high resolution in single-slice structured illumination microscopy by thick slice blind-SIM reconstruction[J]. PLoS One, 10, e0132174(2015).

    [35] Heintzmann R, Jovin T M, Cremer C. Saturated patterned excitation microscopy—a concept for optical resolution improvement[J]. Journal of the Optical Society of America A, 19, 1599-1609(2002).

    [36] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences, 102, 13081-13086(2005).

    [37] Rego E H, Shao L, Macklin J J et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J]. Proceedings of the National Academy of Sciences, 109, E135-E143(2012).

    [38] Li D, Shao L, Chen B C, cytoskeletal dynamics[J]. Science et al. 349(6251):aab3500(2015).

    [39] Zhao G Y, Zheng C, Kuang C F et al. Nonlinear focal modulation microscopy[J]. Physical Review Letters, 120, 193901(2018).

    [40] Cao R Z, Kuang C F, Liu Y et al. Superresolution via saturated virtual modulation microscopy[J]. Optics Express, 25, 32364-32379(2017).

    [42] Müller C B, Enderlein J. Image scanning microscopy[J]. Physical Review Letters, 104, 198101(2010).

    [43] super-resolution[J]. Nature Methods. 12(12): i-ii. Huff J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio(2015).

    [46] Ge B L, Wang Y F, Huang Y J et al. Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection[J]. Optics Letters, 41, 2013-2016(2016).

    [47] Ge B L, Huang Y J, Fang Y et al. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection[J]. Journal of Modern Optics, 64, 1597-1603(2017).

    [48] Zhu D Z, Fang Y, Chen Y H et al. Comparison of multi-mode parallel detection microscopy methods[J]. Optics Communications, 387, 275-280(2017).

    [50] Shroff S A, Fienup J R, Williams D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution[J]. Journal of the Optical Society of America A, 26, 413-424(2009).

    [51] Zhi Y N, Lu R W, Wang B Q et al. Rapid super-resolution line-scanning microscopy through virtually structured detection[J]. Optics Letters, 40, 1683-1686(2015).

    [52] Kuang C F, Ma Y, Zhou R J et al. Virtualk-space modulation optical microscopy[J]. Physical Review Letters, 117, 028102(2016).

    [53] Hao X, Liu X, Kuang C F et al. Far-field super-resolution imaging using near-field illumination by micro-fiber[J]. Applied Physics Letters, 102, 013104(2013).

    [57] Pang C L, Li J X, Tang M W et al. Super-resolution microscopy: on-chip super-resolution imaging with fluorescent polymer films[J]. Advanced Functional Materials, 29, 1970188(2019).

    [61] Cao S, Wang T S, Yang J Z et al. Numerical analysis of wide-field optical imaging with a sub-20 nm resolution based on a meta-sandwich structure[J]. Scientific Reports, 7, 1-8(2017).

    [62] Zeng X D, Al-Amri M, Zubairy M S. Nanometer-scale microscopy via graphene plasmons[J]. Physical Review B, 90, 235418(2014).

    [63] Cao S, Wang T S, Sun Q et al. Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution[J]. Optics Express, 25, 14494-14503(2017).

    [65] Bezryadina A, Zhao J X, Xia Y et al. High spatiotemporal resolution imaging with localized plasmonic structured illumination microscopy[J]. ACS Nano, 12, 8248-8254(2018).

    [67] Liu Q L, Fang Y, Zhou R J et al. Surface wave illumination Fourier ptychographic microscopy[J]. Optics Letters, 41, 5373-5376(2016).

    [69] Schermelleh L, Ferrand A, Huser T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).

    [70] Helle Ø I, Dullo F T, Lahrberg M et al. Structured illumination microscopy using a photonic chip[J]. Nature Photonics, 14, 431-438(2020).

    [81] Hoffman D P, Shtengel G, Xu C S et al. 367(6475):eeaz5357[J]. block-face electron microscopy of whole vitreously frozen cells. Science(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiang Hao, Qing Yang, Cuifang Kuang, Xu Liu. Optical Super-Resolution Imaging Based on Frequency Shift[J]. Acta Optica Sinica, 2021, 41(1): 0111001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Aug. 24, 2020

    Accepted: Oct. 12, 2020

    Published Online: Feb. 23, 2021

    The Author Email: Liu Xu (liuxu@zju.edu.cn)

    DOI:10.3788/AOS202141.0111001

    Topics