Acta Optica Sinica, Volume. 42, Issue 13, 1319001(2022)

Influence of Potential Barriers on Chirped Gaussian Beams in Fractional System

Lizhi Fang, Lijun Song*, and Shengjie Chen
Author Affiliations
  • College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    References(40)

    [1] Laughlin R B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations[J]. Physical Review Letters, 50, 1395-1398(1983).

    [2] Wen J M, Zhang Y, Xiao M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics[J]. Advances in Optics and Photonics, 5, 83-130(2013).

    [3] Rokhinson L P, Liu X Y, Furdyna J K. The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles[J]. Nature Physics, 8, 795-799(2012).

    [4] Kröger H. Fractal geometry in quantum mechanics, field theory and spin systems[J]. Physics Reports, 323, 81-181(2000).

    [5] Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 339, 1-77(2000).

    [6] Wang L, Yang G Y, Ren J P et al. Spectral compression of super-Gaussian pulse by dual cosinoidal phase modulation[J]. Acta Optica Sinica, 38, 0319001(2018).

    [7] Laskin N. Fractional quantum mechanics[J]. Physical Review E, 62, 3135-3145(2000).

    [8] Laskin N. Fractional quantum mechanics and Lévy path integrals[J]. Physics Letters A, 268, 298-305(2000).

    [9] Laskin N. Fractional Schrödinger equation[J]. Physical Review E, 66, 056108(2002).

    [10] Longhi S. Fractional Schrödinger equation in optics[J]. Optics Letters, 40, 1117-1120(2015).

    [11] Zhang Y Q, Zhong H, Belić M R et al. Diffraction-free beams in fractional Schrödinger equation[J]. Scientific Reports, 6, 23645(2016).

    [12] Zhang Y Q, Liu X, Belić M R et al. Propagation dynamics of a light beam in a fractional Schrödinger equation[J]. Physical Review Letters, 115, 180403(2015).

    [13] Zhang Y Q, Zhong H, Belić M R et al. PT symmetry in a fractional Schrödinger equation[J]. Laser & Photonics Reviews, 10, 526-531(2016).

    [14] Zhang L F, Li C X, Zhong H Z et al. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes[J]. Optics Express, 24, 14406-14418(2016).

    [15] Zhang L F, He Z H, Conti C et al. Modulational instability in fractional nonlinear Schrödinger equation[J]. Communications in Nonlinear Science and Numerical Simulation, 48, 531-540(2017).

    [16] Guo B L, Huang D W. Existence and stability of standing waves for nonlinear fractional Schrödinger equations[J]. Journal of Mathematical Physics, 53, 083702(2012).

    [17] Wang D L, Xiao A G, Yang W. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative[J]. Journal of Computational Physics, 242, 670-681(2013).

    [18] Klein C, Sparber C, Markowich P. Numerical study of fractional nonlinear Schrödinger equations[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470, 20140364(2014).

    [19] Huang X W, Shi X H, Deng Z X et al. Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrödinger equation[J]. Optics Express, 25, 32560-32569(2017).

    [20] Liemert A, Kienle A. Fractional Schrödinger equation in the presence of the linear potential[J]. Mathematics, 4, 31(2016).

    [21] Huang X W, Deng Z X, Fu X Q. Dynamics of finite energy Airy beams modeled by the fractional Schrödinger equation with a linear potential[J]. Journal of the Optical Society of America B, 34, 976-982(2017).

    [22] Dong L W, Huang C M. Double-hump solitons in fractional dimensions with a PT-symmetric potential[J]. Optics Express, 26, 10509-10518(2018).

    [23] Xiao Y, Zhang J, Wang P X. Periodic evolution of Airy-Gaussian beams under linear potential[J]. Chinese Journal of Lasers, 48, 0105002(2021).

    [24] Wang D D, Zang F, Li L. Manipulation of Gaussian beam based on fractional Schrödinger equation[J]. Acta Photonica Sinica, 48, 1048005(2019).

    [25] Zhang Y Q, Wang R, Zhong H et al. Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation[J]. Optics Express, 25, 32401-32410(2017).

    [26] Zhang Y Q, Wang R, Zhong H et al. Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation[J]. Scientific Reports, 7, 17872(2017).

    [27] Huang C M, Dong L W. Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice[J]. Optics Letters, 41, 5636-5639(2016).

    [28] Zhong W P, Belić M R, Zhang Y Q. Accessible solitons of fractional dimension[J]. Annals of Physics, 368, 110-116(2016).

    [29] Xiao J, Tian Z X, Huang C M et al. Surface gap solitons in a nonlinear fractional Schrödinger equation[J]. Optics Express, 26, 2650-2658(2018).

    [30] Chen M N, Zeng S H, Lu D Q et al. Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity[J]. Physical Review E, 98, 022211(2018).

    [31] Zeng L W, Zeng J H. One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice[J]. Optics Letters, 44, 2661-2664(2019).

    [32] Huang C M, Dong L W. Dissipative surface solitons in a nonlinear fractional Schrödinger equation[J]. Optics Letters, 44, 5438-5441(2019).

    [33] Zhu X, Yang F W, Cao S L et al. Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices[J]. Optics Express, 28, 1631-1639(2020).

    [34] Li P F, Li J D, Han B C et al. PT-symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation[J]. Romain Reports in Physics, 71, 106(2019).

    [35] Li P F, Malomed B A, Mihalache D. Symmetry breaking of spatial Kerr solitons in fractional dimension[J]. Chaos, Solitons & Fractals, 132, 109602(2020).

    [36] Huang C M, Shang C, Li J et al. Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice[J]. Optics Express, 27, 6259-6267(2019).

    [37] Zhang L F, Zhang X, Wu H Z et al. Anomalous interaction of Airy beams in the fractional nonlinear Schrödinger equation[J]. Optics Express, 27, 27936-27945(2019).

    [38] Zang F, Wang Y, Li L. Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient[J]. Optics Express, 26, 23740-23750(2018).

    [39] Chen Y Z, Zhao G W, Ye F et al. Nonparaxial propagation properties of the chirped Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis[J]. Chinese Physics B, 27, 104201(2018).

    [40] Zhang J B, Pang Z H, Feng L Y et al. Propagation properties of the chirped Airy vortex beams through left-handed and right-handed material slabs[J]. Chinese Optics Letters, 15, 60501-60506(2017).

    Tools

    Get Citation

    Copy Citation Text

    Lizhi Fang, Lijun Song, Shengjie Chen. Influence of Potential Barriers on Chirped Gaussian Beams in Fractional System[J]. Acta Optica Sinica, 2022, 42(13): 1319001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Nov. 23, 2021

    Accepted: Jan. 4, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Song Lijun (songlij@sxu.edu.cn)

    DOI:10.3788/AOS202242.1319001

    Topics