Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 4, 1308(2024)
Effect of Fe2O3 on Phase Structure and Chemical Stability of Cerium-Containing Perovskite Glass-Ceramics
[1] [1] KUMAR A, KULRIYA P K, SHARMA S K, et al. Structural and compositional effects on the electronic excitation induced phase transformations in Gd2Ti2-yZryO7 pyrochlore[J]. Journal of Nuclear Materials, 2020, 539: 152278.
[2] [2] WU K M, WANG F, LIAO Q L, et al. Synthesis of pyrochlore-borosilicate glass-ceramics for immobilization of high-level nuclear waste[J]. Ceramics International, 2020, 46(5): 6085-6094.
[3] [3] ZHANG Y J, MIR A H. A review of brannerite structured materials for nuclear waste management[J]. Journal of Nuclear Materials, 2023, 583: 154512.
[4] [4] KONG L G, ZHANG Y J, KARATCHEVTSEVA I. Preparation of Y2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinides: the effects of processing conditions[J]. Journal of Nuclear Materials, 2017, 494: 29-36.
[5] [5] ZHU H Z, WANG F, LIAO Q L, et al. Structure features, crystallization kinetics and water resistance of borosilicate glasses doped with CeO2[J]. Journal of Non-Crystalline Solids, 2019, 518: 57-65.
[6] [6] WANG F, LI L, ZHU H Z, et al. Effects of heat treatment temperature and CeO2 content on the phase composition, structure, and properties of monazite phosphate-based glass-ceramics[J]. Journal of Non-Crystalline Solids, 2022, 588: 121631.
[7] [7] KONG L G, KARATCHEVTSEVA I, WEI T. In-situ crystallization of lanthanide titanate stannate (Ln2TiSnO7) pyrochlore in glass: a glass-ceramic system for potential nuclear waste sequestration[J]. Journal of Nuclear Materials, 2023, 577: 154322.
[8] [8] CAI X, TENG Y C, WU L, et al. The synthesis and chemical durability of Nd-doped single-phase zirconolite solid solutions[J]. Journal of Nuclear Materials, 2016, 479: 455-460.
[9] [9] KONG L G, KARATCHEVTSEVA I, ZHANG Y J, et al. The incorporation of Nd or Ce in CaZrTi2O7 zirconolite: ceramic versus glass-ceramic[J]. Journal of Nuclear Materials, 2021, 543: 152583.
[10] [10] KUMAR YADAV A, GAUTAM C R. A review on crystallisation behaviour of perovskite glass ceramics[J]. Advances in Applied Ceramics, 2014, 113(4): 193-207.
[11] [11] LIVSHITS T S, LIZIN A A, TOMILIN S V. Chemical and radiation stability of 244Cm-doped aluminate perovskite[J]. Geology of Ore Deposits, 2014, 56(6): 440-450.
[12] [12] BARDEZ-GIBOIRE I, KIDARI A, MAGNIN M, et al. Americium and trivalent lanthanides incorporation in high-level waste glass-ceramics[J]. Journal of Nuclear Materials, 2017, 492: 231-238.
[13] [13] LOISEAU P, CAURANT D. Glass-ceramic nuclear waste forms obtained by crystallization of SiO2-Al2O3-CaO-ZrO2-TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of the crystallization from the surface[J]. Journal of Nuclear Materials, 2010, 402(1): 38-54.
[14] [14] KAMEL N E H, MOUHEB Y, KAMEL Z, et al. Influence of the sintering temperature on the Sr content in a Ca(1-x-y)CexSryAlzTi(1-z)O3 perovskite (x=0.04-0.16) Co-doped with Ce[J]. Journal of Nuclear Materials, 2016, 477: 139-148.
[15] [15] MU W J, YU Q H, LI X L, et al. Crystal structure stability of simulated Sr1-1.5xYxTiO3(x=0-0.12) waste forms[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2017, 32(1): 89-93.
[16] [16] GOETHALS J, BEDIDI A, FOURDRIN C, et al. Experimental study of trivalent rare-earth element incorporation in CaTiO3 perovskite: evidence for a new substitution mechanism[J]. Physics and Chemistry of Minerals, 2019, 46(10): 1003-1015.
[17] [17] XU Y L, LIAO Q L, WANG F, et al. Impacts of substitution of Fe2O3 for SiO2 on structure and properties of borosilicate glasses containing MoO3[J]. Journal of Non-Crystalline Solids, 2023, 599: 121982.
[18] [18] ZHOU J J, LIAO Q L, WANG F, et al. Effect of Na2O and CaO on the solubility and crystallization of Mo in borosilicate glasses[J]. Journal of Non-Crystalline Solids, 2021, 557: 120623.
[19] [19] ZHU H Z, WANG F, LIAO Q L, et al. Effect of CeO2 and Nd2O3 on phases, microstructure and aqueous chemical durability of borosilicate glass-ceramics for nuclear waste immobilization[J]. Materials Chemistry and Physics, 2020, 249: 122936.
[20] [20] AKATOV A A, NIKONOV B S, OMEL’YANENKO B I, et al. Influence of the content of a surrogate of iron aluminate high-level wastes on the phase composition and structure of glassy materials for their immobilization[J]. Glass Physics and Chemistry, 2010, 36(1): 45-52.
[21] [21] ZHU H Z, WANG F, LIAO Q L, et al. Synthesis and characterization of zirconolite-sodium borosilicate glass-ceramics for nuclear waste immobilization[J]. Journal of Nuclear Materials, 2020, 532: 152026.
[22] [22] YU M, LIN J, ZHOU S B, et al. Sol-gel deposition and luminescent properties of oxyapatite Ca2(Y, Gd)8(SiO4)6O2 phosphor films doped with rare earth and lead ions[J]. Journal of Materials Chemistry, 2002, 12(1): 86-91.
[23] [23] KSAPABUTR B, GULARI E, WONGKASEMJIT S. Sol-gel derived porous ceria powders using cerium glycolate complex as precursor[J]. Materials Chemistry and Physics, 2006, 99(2/3): 318-324.
[24] [24] LI F, LIU X, HE T. Solid state synthesis of CaTiO3: Dy3+/Eu3+ phosphors towards white light emission[J]. Chemical Physics Letters, 2017, 686: 78-82.
[25] [25] YAN Y X, YANG H, YI Z, et al. Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation[J]. Solid State Sciences, 2020, 100: 106102.
[26] [26] YANG L Q, CAI Z Y, YANG L Q, et al. Solid state synthesis, luminescence and afterglow enhancements of CaTiO3: Pr3+ by Ga3+ codoping[J]. Journal of Luminescence, 2018, 197: 339-342.
[27] [27] SADDEEK Y B, GAAFAR M S, BASHIER S A. Structural influence of PbO by means of FTIR and acoustics on calcium alumino-borosilicate glass system[J]. Journal of Non-Crystalline Solids, 2010, 356(20/21/22): 1089-1095.
[28] [28] MARZOUK S Y, SEOUDI R, SAID D A, et al. Linear and non-linear optics and FTIR characteristics of borosilicate glasses doped with gadolinium ions[J]. Optical Materials, 2013, 35(12): 2077-2084.
[29] [29] KOUDELKA L, MONER P, UBIK J. Study of structure and properties of modified borophosphate glasses[C]//IOP Conference Series: Materials Science and Engineering, 2009, 2: 012015.
[30] [30] TANG Y X, JIANG Z H, SONG X Y. NMR, IR and Raman spectra study of the structure of borate and borosilicate glasses[J]. Journal of Non-Crystalline Solids, 1989, 112(1/2/3): 131-135.
[31] [31] SUTRADHAR M, CARRELLA L M, RENTSCHLER E. Mononuclear Mn(III) and dinuclear Mn(III, III) Schiff base complexes: influence of π-π stacking on magnetic properties[J]. Polyhedron, 2012, 38(1): 297-303.
[32] [32] GU Y X, LIAO Q L, WANG F, et al. Effect of Li2O substitution for Na2O on the solubility and water durability of Mo in aluminoborosilicate glass[J]. International Journal of Applied Glass Science, 2022, 13(1): 112-120.
[33] [33] EREMYASHEV V E, OSIPOV A A, OSIPOVA L M. Borosilicate glass structure with rare-earth-metal cations substituted for sodium cations[J]. Glass and Ceramics, 2011, 68(7): 205-208.
[34] [34] GAAFAR M S, MARZOUK S Y. Mechanical and structural studies on sodium borosilicate glasses doped with Er2O3 using ultrasonic velocity and FTIR spectroscopy[J]. Physica B: Condensed Matter, 2007, 388(1/2): 294-302.
[35] [35] MALININA G A, STEFANOVSKY S V, STEFANOVSKAYA O I. Phase composition and structure of boron-free and boron-containing sodium aluminum iron silicate glass materials for solid radioactive waste immobilization[J]. Glass Physics and Chemistry, 2012, 38(3): 280-289.
[36] [36] DANTAS N O, AYTA W E F, SILVA A C A, et al. Effect of Fe2O3 concentration on the structure of the SiO2-Na2O-Al2O3-B2O3 glass system[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 81(1): 140-143.
[37] [37] WANG Z B, ZHAO Z W, PENG B, et al. Investigation on the mechanism of the immobilization of CeO2 by using cullet-based glass (CBG)[J]. Annals of Nuclear Energy, 2019, 133: 209-215.
[38] [38] MD ZAIN S K, SAZALI E S, MOHD-NOOR F, et al. Effect of calcination temperature on structure of mesoporous borosilicate bioglass[J]. Journal of Physics: Conference Series, 2021, 1892(1): 012030.
[39] [39] WANG F, WANG Y L, CHEN J J, et al. Effect of cerium oxide on phase composition, structure, thermal stability and aqueous durability of sodium-iron-boron-phosphate based glasses[J]. Journal of Nuclear Materials, 2021, 556: 153199.
[40] [40] OJOVAN M I, LEE W E. An introduction to nuclear waste immobilisation[M]. 3rd ed. London: Newnes, 2013.
[41] [41] FRANKEL G S, VIENNA J D, LIAN J, et al. Recent advances in corrosion science applicable to disposal of high-level nuclear waste[J]. Chemical Reviews, 2021, 121(20): 12327-12383.
[42] [42] DORET A, PELLERIN N, ALLIX M, et al. Influence of alteration solutions on the chemical durability of the zerodur glass-ceramic: structural investigation[J]. International Journal of Applied Ceramic Technology, 2015, 12(4): 811-822.
Get Citation
Copy Citation Text
PU Boyang, LIAO Qilong, WANG Fu, GU Yuxin, XU Youli, ZHU Hanzhen. Effect of Fe2O3 on Phase Structure and Chemical Stability of Cerium-Containing Perovskite Glass-Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(4): 1308
Special Issue:
Received: Nov. 28, 2023
Accepted: --
Published Online: Aug. 14, 2024
The Author Email: Qilong LIAO (liaoqilong@swust.edu.cn)
CSTR:32186.14.