Journal of Inorganic Materials, Volume. 39, Issue 5, 517(2023)
[1] HAMIMED S, JABBERI M, CHATTI A. Nanotechnology in drug and gene delivery[J]. Naunyn-schmiedeberg's Archives of Pharmacology, 769(2022).
[2] ZU H, GAO D. Non-viral vectors in gene therapy: recent development, challenges, and prospects[J]. The AAPS Journal, 78(2021).
[4] LI H, WU X, YANG B et al. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: structure, wettability, degradation, biocompatibility and brain distribution[J]. Materials Science and Engineering: C, 453(2019).
[5] LEVINGSTONE T J, HERBAJ S, REDMOND J et al. Calcium phosphate nanoparticles-based systems for RNAi delivery: applications in bone tissue regeneration[J]. Nanomaterials, 146(2020).
[6] THOMAS T J, TAJMIR-RIAHI H A, PILLAI C K S. Biodegradable polymers for gene delivery[J]. Molecules, 3744(2019).
[7] REN S, WANG M, WANG C et al. Application of non-viral vectors in drug delivery and gene therapy[J]. Polymers, 3307(2021).
[8] ALI A, SHAH T, ULLAH R et al. Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications[J]. Frontiers in Chemistry, 629054(2021).
[11] MAI B T, CONTEH J S, GAVILÁN H et al. Clickable polymer ligand-functionalized iron oxide nanocubes: a promising nanoplatform for ‘Local Hot Spots’ magnetically triggered drug release[J]. ACS Applied Materials & Interfaces, 48476(2022).
[12] SENTURK F, CAKMAK S, KOCUM I C et al. Effects of radiofrequency exposure on
[13] SHEN B, MA Y, YU S et al. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo- chemotherapy and intracellular imaging[J]. ACS Applied Materials & Interfaces, 24502(2016).
[14] RADOŃ A, ŁUKOWIEC D, KREMZER M et al. Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method[J]. Materials, 735(2018).
[15] ASAB G, ZEREFFA E A, SEGHNE T A. Synthesis of silica-coated Fe3O4nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity[J]. International Journal of Biomaterials, 4783612(2020).
[16] LEMINE O M, OMRI K, ZHANG B et al. Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties[J]. Superlattices and Microstructures, 793(2012).
[17] PATSULA V, KOSINOVÁ L, LOVRIĆ M et al. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron (III) glucuronate and application in magnetic resonance imaging[J]. ACS Applied Materials & Interfaces, 7238(2016).
[18] ELMAHAISHI M F, AZIS R S, ISMAIL I et al. Structural, electromagnetic and microwave properties of magnetite extracted from mill scale waste
[19] RAFIENIA M, BIGHAM A, HASSANZADEH-TABRIZI S A. Solvothermal synthesis of magnetic spinel ferrites[J]. Journal of Medical Signals and Sensors, 108(2018).
[21] QIU X, WANG Y, XUE Y et al. Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid
[22] WULANDARI I O, SULISTYARTI H, SAFITRI A et al. Development of synthesis method of magnetic nanoparticles modified by oleic acid and chitosan as a candidate for drug delivery agent[J]. Journal of Applied Pharmaceutical Science, 1(2019).
[23] VASIĆ K, KNEZ Ž, KONSTANTINOVA E A et al. Structural and magnetic characteristics of carboxymethyl dextran coated magnetic nanoparticles: from characterization to immobilization application[J]. Reactive and Functional Polymers, 104481(2020).
[24] KOO C, HONG H, IM P W et al. Magnetic and near-infrared derived heating characteristics of dimercaptosuccinic acid coated uniform Fe@Fe3O4 core-shell nanoparticles[J]. Nano Convergence, 1(2020).
[25] PENG S, WANG Q Y, XIAO X et al. Redox-responsive polyethyleneimine-coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging[J]. Polymer International, 206(2020).
[27] ÇITOĞLU S, COSKUN Ö D, TUNG L D et al. DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents[J]. Nanomedicine, 925(2021).
[28] FENG X, XUE Y, GONCA S et al. Ultrasmall superparamagnetic iron oxide nanoparticles for enhanced tumor penetration[J]. Journal of Materials Chemistry B, 3422(2023).
[29] NI X, ZHANG J, ZHAO L et al. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features[J]. Journal of Physics and Chemistry of Solids, 110855(2022).
[30] DEMBEK M, BOCIAN S, BUSZEWSKI B. Solvent influence on zeta potential of stationary phase—mobile phase interface[J]. Molecules, 968(2022).
[32] KIM D Y, KWON J S, LEE J H et al. Effects of the surface charge of stem cell membranes and DNA/polyethyleneimine nanocomplexes on gene transfection efficiency[J]. Journal of Biomedical Nanotechnology, 522(2015).
[33] ALMESSIERE M A, SLIMANI Y, GÜNGÜNES H et al. Magnetic attributes of NiFe2O4 nanoparticles: influence of dysprosium ions (Dy3+) substitution[J]. Nanomaterials, 820(2019).
[34] ARSALANI S, GUIDELLI E J, SILVEIRA M A et al. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent[J]. Journal of Magnetism and Magnetic Materials, 458(2019).
[35] DEVI E C, SINGH S D. Tracing the magnetization curves: a review on their importance, strategy, and outcomes[J]. Journal of Superconductivity and Novel Magnetism, 15(2021).
[36] PIMPHA N, CHALEAWLERT-UMPON S, SUNINTABOON P. Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization[J]. Polymer, 2015(2012).
Get Citation
Copy Citation Text
Heqing CAI, Lu HAN, Songsong YANG, Xinyu XUE, Kou ZHANG, Zhicheng SUN, Ruping LIU, Kun HU, Yan WEI.
Category:
Received: Oct. 9, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: Lu HAN (hanlu@iccas.ac.cn), Yan WEI (weiyen@tsinghua.edu.cn)