Infrared and Laser Engineering, Volume. 50, Issue 11, 20210199(2021)
Development and prospects of deployable space optical telescope technology
[1] [1] Lillie C F. Large deployable telescopes f future space observaties [C]UVOpticalIR Space Telescopes: Innovative Technologies Concepts II, 2005, 5899: 58990D.
[2] Xuejun Zhang, Yanchao Fan, He Bao, et al. Applications and development of ultra large aperture space optical remote sensor. Optics and Precision Engineering, 24, 2613-2626(2016).
[3] [3] Greenhouse M A. The JWST science instrument payload: mission context status [C]UVOpticalIR Space Telescopes Instruments: Innovative Technologies Concepts VI, 2013, 8860: 886004.
[4] [4] Sabelhaus P A, Decker J E. An overview of the James Webb Space Telescope (JWST) project [C]Optical, Infrared, Millimeter Space Telescopes, 2004, 5487: 550563.
[5] [5] Clampin M. Status of the James Webb space telescope observaty [C]Space Telescopes Instrumentation 2012: Optical, Infrared, Millimeter Wave, 2012, 8442: 84422A.
[6] [6] Reynolds P, Atkinson C, Gliman L. Design development of the primary secondary mirr deployment systems f the cryogenic JWST [C]37th Aerospace Mechanisms Symposium, 2004: 2944.
[7] [7] Acton D S, Knight J S, Contos A, et al. Wavefront sensing controls f the James Webb space telescope [C]Space Telescopes Instrumentation 2012: Optical, Infrared, Millimeter Wave, 2012, 8442: 84422H.
[8] [8] Kimble R A, Bowers C W, McElwain M W, et al. Completion of the JWST spacecraftsunshield telescopeinstrument elements [C]American Astronomical Society Meeting, 2020, 235: 37210.
[9] [9] Clampin M. Overview of the James Webb space telescope observaty [C]UVOpticalIR Space Telescopes Instruments: Innovative Technologies Concepts V, 2011, 8146: 814605.
[10] [10] Arenberg J, Flynn J, Cohen A, et al. Status of the JWST sunshield spacecraft [C]Space Telescopes Instrumentation 2016: Optical, Infrared, Millimeter Wave, 2016, 9904: 990405.
[11] [11] The LUVOIR Team. The LUVOIR mission concept study final rept [R]. Washington: National Aeronautics Space Administration, 2019.
[12] [12] Park S, Eisenhower M J, Bolcar M R, et al. LUVOIR thermal architecture overview enabling technologies f picometerscale WFE stability [C]2019 IEEE Aerospace Conference, 2019: 113.
[13] [13] Hylan J E, Bolcar M R, Crooke J, et al. The large UVOpticallnfrared survey (LUVOIR): decadal mission concept study update [C]2019 IEEE Aerospace Conference, 2019: 115.
[14] M R Allen, J J Kim, B N Agrawal. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration. Journal of Astronomical Telescopes, Instruments, and Systems, 2, 029001(2016).
[15] [15] Watson J J. Crecting surface figure err in imaging satellites using a defmable mirr[D]. Monterey: Naval Postgraduate School, 2013.
[16] [16] Mesrine M, Thomas E, Garin S, et al. High resolution earth observation from geostationary bit by optical aperture synthesys [C]International Conference on Space Optics, 2006, 10567: 105670B.
[17] [17] Aguirre M, Bézy J L. ESA activities related to high resolution imaging from GEO [C]HR GEO User Consultation Wkshop, 2010.
[18] [18] Bello U D, Massotti L. ESA studies on HR imaging from geostationary satellites [C]2nd GEOHR User Consultation Wkshop, 2013.
[19] [19] Decourt R. Hoasis: Surveillance à haute résolution depuis l’bite géostationnaire [EBOL]. (20130802) [20210101] http:www.futurasciences.commagazinesespaceinfosactudastronautiquehoasissurveillancehauteresolutiondepuisbitegeostationnaire48077.
[20] [20] BeharLafere S. Active optics in deployable systems f future EO science missions[R]. Cannes: Thales Alenia Space France SAS, 2020.
[21] [21] MaroneHitz P. Modeling of spatial structures deployed by tape springs: Towards a homemade modeling tool based on rod models with flexible cross sections asymptotic numerical methods[D]. Marseille: Ecole Centrale Marseille, 2014.
[22] [22] Picault E, Bourgeois S, Cochelin B, et al. A new rod model f the folding deployment of tape springs with highly defmable crosssections [C]7th International Conference on Computational Mechanics f Spatial Structures, 2012: 283.
[23] [23] Picault E, Bourgeois S, Cochelin B, et al. On the folding deployment of tape springs: A large displacements large rotations rod model with highly flexible thinwalled crosssections [C]53rd AIAAASMEEAHS Structures, Structural Dynamics Materials Conference, 2012: 1956.
[24] [24] Dolkens D, Kuiper J M. A deployable telescope f submeter resolutions from microsatellite platfms [C]International Conference on Space Optics, 2014: 10563.
[25] [25] Dolkens D, Marrewijk G V, Kuiper H. Active crection system of a deployable telescope f Earth observation [C]International Conference on Space Optics, 2018, 11180: 111800A.
[26] D Dolkens, H Kuiper, V V Corbacho. The deployable telescope: A cutting-edge solution for high spatial and temporal resolved earth observation. Advanced Optical Technologies, 7, 365-376(2018).
[27] [27] Arink J W. Thermalmechanical design of a baffle f the deployable space telescope[D]. Delft: Delft University of Technology, 2019.
[28] [28] Schwartz N, Pearson D, Todd S, et al. A segmented deployable primary mirr f earth observation from a CubeSat platfm [C]29th Annual AIAAUSU Conference on Small Satellites, 2016.
[29] [29] Schwartz N, Pearson D, Todd S, et al. Labaty demonstration of an active optics system f highresolution deployable CubeSat [C]Small Satellites, System & Services Symposium, 2018.
[30] [30] Schwartz N, Brzozowski W, Milanova M, et al. Highresolution deployable CubeSat prototype [C]Space Telescopes Instrumentation 2020: Optical, Infrared, Millimeter Wave, 2020, 11443: 1144331.
[31] [31] Silver M J, Echter M A, Reid B M, et al. Precision high strain composite hinges f the deployable inspace coherent imaging telescope [C]3rd AIAA Spacecraft Structures Conference, 2016: 0969.
[32] [32] Silver M, Echter M. Precision highstrain composite hinges f deployable space telescopes [C]44th Aerospace Mechanisms Symposium, 2018: 417.
[33] [33] Echter M A, Silver M J, D''Elia E, et al. Recent developments in precision high strain composite hinges f deployable space telescopes [C]AIAA Spacecraft Structures Conference, 2018: 0939.
[34] M A Echter, S R Gillmer, M J Silver, et al. A multifunctional high strain composite (HSC) hinge for deployable in-space optomechanics. Smart Materials and Structures, 29, 105010(2020).
[35] [35] Stoll E, Mindermann P, Grzesik B, et al. OculusCube – a demonstrat of optical coatings f ultra lightweight robust spacecraft structures [C]11th IAA Symposium on Small Satellites f Earth Observation, 2017.
[36] [36] Grzesik B, Mindermann P, Linke S, et al. Alignment mechanism system concept of a scalable deployable ultralightweight space telescope f a 1U CubeSat demonstrat [C]68th International Astronautical Congress (IAC), 2017.
[37] [37] Grzesik B, Stoll E, De Wit J, et al. Manufacturing preliminary testing of a scalable deployable ultralightweight space telescope[C]Small Satellites, System & Services Symposium, 2018.
[38] [38] Champagne J, Crowther B, Newswer T. Deployable mirr f enhanced imagery suitable f small satellite applications [C]27th Annual AIAAUSU Conference on Small Satellites, 2013.
[39] [39] Champagne J, Hansen S, Newswer T, et al. CubeSat image resolution capabilities with deployable optics current imaging technology [C]28th Annual AIAAUSU Conference on Small Satellites, 2014.
[40] [40] Łapczyński R. Realtime earthobservation constellation (REC) [C]ITU Regional Innovation Fum f Europe on Bridging the Digital Innovation Divide, 2018.
[41] [41] Graja A, Ćwikła M, Kwapisz P. DeploScope – A modular deployable CubeSat telescope [C]2018 International Young Scientists Students Wkshop, 2018: 1824.
[42] [42] Tanaka T, Sato Y, Kusakawa Y, et al. The operation results of earth image acquisition using extensible flexible optical telescope of "PRISM" [C]27th Interlational Symposium on Space Technology Science, 2009.
[43] [43] Sato Y, Kim S K, Kusakawa Y, et al. Extensible flexible optical system f nanoscale remote sensing satellite "PRISM" [C]Transactions of the Japan Society f Aeronautical Space Sciences, Space Technology Japan, 2009, 7: Tm_1318.
[44] T Inamori, K Shimizu, Y Mikawa, et al. Attitude stabilization for the nano remote sensing satellite PRISM. Journal of Aerospace Engineering, 26, 594-602(2013).
[45] [45] Komatsu M, Nakasuka S. University of Tokyo nano satellite project "PRISM"[C]Transactions of the Japan Society f Aeronautical Space Sciences, Space Technology Japan, 2009, 7: Tf_1924.
[46] [46] Agasid E, Rademacher A, McCullar Ml, et al. Study to determine the feasibility of a earth observing telescope payload f a 6U nano satellite[R]. Moffett Field: Ames Research Center, 2010.
[47] [47] Agasid E, EnnicoSmith K, Rademacher A. Collapsible space telescope (CST) f nanosatellite imaging observation [C]27th Annual AIAAUSU Conference on Small Satellites, 2013.
[48] [48] Gooding D, Ridson G, Haslehurst A, et al. A novel deployable telescope to facilitate a lowcost
[49] [49] She J, Blows R, Viquerat A, et al. A new generation of deployable optics f Earth observation using small satellites [C]18th European Space Mechanisms Tribology Symposium, 2019: 18.
[50] [50] She J, Blows R, Viquerat A, et al. A novel deployable telescope f earth observation [C]AIAA Scitech 2021 Fum, 2021: 1034.
[51] [51] Aglietti G S, Hoh M, Gensemer S, et al. Deployable optics f CubeSats [C]34th Annual AIAAUSU Conference on Small Satellites, 2020.
[52] [52] Yalagach A, Aglietti G, Hoh M, et al. Deployable barrel f a CubeSat’s optical payload [C]AIAA Scitech 2021 Fum, 2021: 1791.
[53] S Jeong, J Choi, D Lee, et al. The establishment of requirement and kinematic analysis of mechanism for deployable optical structure. Journal of the Korean Society for Aeronautical & Space Sciences, 42, 701-706(2014).
[54] J Choi, D Lee, K Hwang, et al. A mechanism for a deployable optical structure of a small satellite. International Journal of Precision Engineering and Manufacturing, 16, 2537-2543(2015).
[55] J Choi, D Lee, K Hwang, et al. Design, fabrication, and evaluation of a passive deployment mechanism for deployable space telescope. Advances in Mechanical Engineering, 11, 1687814019852258(2019).
[56] Jihong Dong, Xiaowei Chen. Analysis on design strategies of lager-aperture deployable primary mirror of space telescopes. China Mechanical Engineering, 23, 1667-1670(2012).
[57] Yudi Zuo, Guang Jin, Xiaoguang Xie, et al. Design of the spontaneous deployable mechanism for space telescope based on lenticular tape springs. Infrared and Laser Engineering, 46, 0518002(2017).
[58] Huisheng Yang, Xuejun Zhang, Zhilai Li, et al. Study of the impact of co-phasing errors for segmented primary mirror using nonlinear analysis. Optik, 191, 80-88(2019).
[59] Huisheng Yang, Xuejun Zhang, He Bao, et al. Influence of random aspheric parameter errors on the wavefront deformation for segmented primary mirror and its correction. Optik, 200, 163406(2020).
[60] Huisheng Yang, Xuejun Zhang, Zhilai Li, et al. Impact of random segment pose errors for deployable telescope and its tolerance allocation. Optics Communications, 456, 124549(2020).
[61] Huisheng Yang, Xuejun Zhang, Baixu Liu, et al. Large rigid-body displacement parameters extraction of segmented mirror in pose co-phasing adjustment simulation analysis using constrained optimization method. Optik, 224, 165748(2020).
[62] [62] Yang Huisheng. Research on key technologies of ultra large aperture deployable primary mirr system [D]. Changchun: Changchun Institute of Optics, Fine Mechanics Physics, 2019. (in Chinese)
[63] [63] Zhang Long. Research on optical cophasing detection technology of segmented telescope [D]. Changchun: Changchun Institute of Optics, Fine Mechanics Physics, 2020. (in Chinese)
[64] [64] Ni Yanshuo, Zhang Shuyang, Liu Dong, et al. A fourbar linkage designed to accurately deploy the secondary mirr of a large spacebased optical remote sensing system [C]2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, Intelligent Systems (CYBER), 2019: 10731078.
[65] [65] Zhang Shuyang, Ni Yanshuo, Pan Bo, et al. A highaccuracy deployment mechanism designing based on Kelvin couplings with active locking devices [C]2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, Intelligent Systems (CYBER), 2019: 10961101.
[66] [66] Feng Xuegui, Li Chuang, Ren Guui. Mediumsized aperture deployable telescope f microsatellite application [C]International Symposium on Photoelectronic Detection Imaging, 2011, 8196: 81961V.
[67] [67] Li Chuang, Feng Xuegui. Deployment precision measurement modeling of a deployable space telescope based on tape springs [C]Seventh International Symposium on Precision Engineering Measurements Instrumentation, 2011, 8321: 83212R.
[68] [68] Zhao Chao. Research on selfdeployable structure of secondary mirr of space telescope [D]. Xi’an: Xi''an Institute of Optics Precision Mechanics, 2014. (in Chinese)
[69] [69] Zhong Peifeng. Research on the deployment technology to the secondary mirr of the deployable lightweight space telescope [D]. Xi''an: Xi''an Institute of Optics Precision Mechanics, 2017. (in Chinese)
[70] [70] Lei Wang, Li Chuang, Zhong Peifeng, et al. Realization testing of a deployable space telescope based on tape springs [C]Pacific Rim Laser Damage, 2017, 10339: 1033920.
[71] [71] Zhou Nan. Research on six degrees of freedom adjustment of secondary mirr in space telescopes [D]. Xi''an: Xi''an Institute of Optics Precision Mechanics, 2015. (in Chinese)
[72] [72] Feng Xuegui. Research on the measurement of alignment of the deployable telescope secondary mirr [D]. Xi’an: Xi''an Institute of Optics Precision Mechanics, 2012. (in Chinese)
[73] [73] Wang Zhenkun, Zhao Zhicheng, Liu Li. Optimization of structural parameters of sparse apertures with four rectangular subapertures [C]AOPC 2019: Space Optics, Telescopes, Instrumentation, 2019, 11341: 1134113.
[74] [74] Wang Zhenkun. Design of deployable highresolution camera f earth observation 3U CubeSat [D]. Suzhou: Soochow University, 2020. (in Chinese)
[75] [75] Stahl H P. Design study of 8 meter monolithic mirr UVoptical space telescope [C]Space Telescopes Instrumentation, 2008, 7010: 701022.
[76] [76] Chonis T S, Gallagher B B, Knight J S, et al. acterization calibration of the James Webb space telescope mirr actuats fine stage motion [C]Space Telescopes Instrumentation, 2018, 10698: 106983S.
[77] J J Kim, M Mueller, T Martinez, et al. Impact of large field angles on the requirements for deformable mirror in imaging satellites. Acta Astronautica, 145, 44-50(2018).
[78] B Saif, D Chaney, P Greenfield, et al. Measurement of picometer-scale mirror dynamics. Applied Optics, 56, 6457-6465(2017).
[79] [79] Tyson R K. Principles of Adaptive Optics[M]. 3rd ed. USA: CRC Press, 2010.
[80] M Nagashima, B N Agrawal. Active control of adaptive optics system in a large segmented mirror telescope. International Journal of Systems Science, 45, 159-175(2014).
[81] Tao Liu. An overview of development of foreign large aperture reflection imaging technology on geostationary orbit. Spacecraft Recovery & Remote Sensing, 37, 1-9(2016).
[82] [82] Looysen M W. Combined integral robust control of the segmented mirr telescope[D]. Monterey: Naval Postgraduate School, 2009.
[83] [83] Lake M S, Hachkowski M R. Design of mechanisms f deployable, optical instruments: guidelines f reducing hysteresis[R]. Hampton: Langley Research Center, 2000.
[84] V V Corbacho, H Kuiper, E Gill. Review on thermal and mechanical challenges in the development of deployable space optics. Journal of Astronomical Telescopes, Instruments, and Systems, 6, 010902(2020).
[85] Shuang Yang, Changshuai Du, Xianwei Yang, et al. Thermal design of space solar telescope. Infrared and Laser Engineering, 50, 20200294(2021).
[86] Fan Jiang, Qingwen Wu, Ju Liu, et al. Thermal design of lightweight space remote sensor integrated with satellite in low earth orbit. Chinese Optics, 6, 237-243(2013).
Get Citation
Copy Citation Text
Bin Hu, Chuang Li, Meng Xiang, Liangliang Li, Haobin Dai, Pei Yao, Xuyang Li. Development and prospects of deployable space optical telescope technology[J]. Infrared and Laser Engineering, 2021, 50(11): 20210199
Category:
Received: Mar. 26, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email: