Acta Photonica Sinica, Volume. 49, Issue 5, 512004(2020)
Displacement Detection of Optically Trapped Microsphere in Vacuum Based on Kalman Filter
[1] [1] ASHKIN A, DZIEDZIC J M. Optical levitation in high-vacuum[J]. Applied Physics Letters, 1976, 28(6): 333-335.
[2] [2] GIESELER J, NOVOTNY L, QUIDANT R. Thermal nonlinearities in a nanomechanical oscillator[J]. Nature Physics, 2013, 9(12): 806-810.
[3] [3] RANJIT G, ATHERTON D P, STUTZ J H, et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum[J]. Physical Review A, 2015, 91 (5): 051805.
[4] [4] MOORE D C, RIDER A D, GRATTA G. Search for millicharged particles using optically levitated microspheres[J]. Physical Review Letters, 2014, 113(25): 251801.
[5] [5] GERACI A A, PAPP S B, KITCHING J. Short-range force detection using optically cooled levitated microspheres[J]. Physical Review Letters, 2010, 105(10): 101101.
[6] [6] LI T, KHEIFETS S, RAIZEN M G. Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nature Physics, 2011, 7(7): 527-530.
[8] [8] PRALLE A, PRUMMER M, FLORIN E-L, et al.[J]. Microscopy Research & Technique, 1999,44(5): 378-386.
[9] [9] CHAVEZ I, HUANG R, HENDERSON K, et al. Development of a fast position-sensitive laser beam detector[J]. Review of Scientific Instruments 2008, 79(10): 105104.
[10] [10] GHOBADI M, SINGLA P, ESFAHANI E T. Robust attitude estimation from uncertain observations of inertial sensors using covariance inflated multiplicative extended Kalman filter[J]. IEEE Transactions on Instrumentation & Measurement, 2018, 67(1): 209-217.
[11] [11] KETTNER A M, PAOLONE M. Sequential discrete Kalman filter for real-time state estimation in power distribution systems: theory and implementation[J]. IEEE Transactions on Instrumentation & Measurement, 2017, 66(9): 2358-2370.
[12] [12] WELCH G, BISHOP G. An Introduction to the Kalman filter[M]. University of North Carolina at Chapel Hill, 1995.
[13] [13] GREWAL M S, ANDREWS A P. Kalman filtering[J]. Embedded Systems Programming, 2001, 14(2): 90-92.
[14] [14] WIECZOREK W, HOFER S G, HOELSCHER-OBERMAIER J, et al. Optimal state estimation for cavity optomechanical systems[J]. Physical Review Letters, 2015, 114(22): 223601.
[15] [15] SETTER A, TORO M, RALPH J F, et al. Real-time Kalman filter: cooling of an optically levitated nanoparticle[J]. Physical Review A, 2018, 97(3): 033822.
[16] [16] LIAO J, JOST M, SCHAFFNER M, et al. FPGA implementation of a Kalman-based motion estimator for levitated nanoparticles[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(7): 2374-86.
[18] [18] LOCK J A, GOUESBET G. Generalized Lorenz-Mie theory and applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(11): 800-807.
[19] [19] POLLOCK D S G. Handbook of time series analysis, signal processing, and dynamics || preface[M]. Academic Press,1999.
[20] [20] BERESNEV S A, CHERNYAK V G, FOMYAGIN G A. Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization[J]. Journal of Fluid Mechanics, 2006, 219(219): 405-421.
Get Citation
Copy Citation Text
JIANG Jian-bin, HU Hui-zhu, LI Nan, CHEN Xin-fan, SHU Xiao-wu, LIU Cheng, FU Zhen-hai, GAO Xiao-wen. Displacement Detection of Optically Trapped Microsphere in Vacuum Based on Kalman Filter[J]. Acta Photonica Sinica, 2020, 49(5): 512004
Received: Dec. 30, 2019
Accepted: --
Published Online: Jun. 4, 2020
The Author Email: Hui-zhu HU (huhuizhu2000@zju.edu.cn)