Optics and Precision Engineering, Volume. 28, Issue 12, 2636(2020)

D esign of high th roughput d roplet gen eration ch ip

ZHOU Wu-ping1...2, TANG Yu-guo1, LI Hai-wen1,*, JIANG Ke-ming1, LI Cong1, ZHANG Tao1 and ZHANG Zhi-qiang1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(22)

    [1] [1] FIDALGO L M, WHYTE G, BRATTON D, et al.. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices[J]. An. gew. Chem. Int. Ed, 2008, 47(11): 2042-2045.

    [3] [3] HATAKEYAMA T, CHEN D, ISMAGILOV R F. Microgram-scale testing of reaction conditions in solution using nanoliterplugs in microfluidics with de. tection by MALDI-MS[J]. J. Am. Soc, 2006, 128(8): 2518-2519.

    [4] [4] DITTRICH P S, JAHNZ M, SCHWILE P. A new embedded process for compartmentalized cell-free pro. tein expression and on-line detection in microfluidic de. vices[J]. Chem Bio Chem, 2005, 6(5): 811-814.

    [5] [5] WU N, ZHU Y, BROWN S, et al.. A PMMA mi. crofluidic droplet platform for in vitro protein expres. sion using crude E. coli S30 extract[J]. Lab Chip, 2009, 9(23): 3391-3398.

    [8] [8] XU JH, LI S W, TAN J, et al.. Preparation of highly monodisperse droplet in a T-junction micro.uid. ic device[J]. Aiche, 2006, 52(9): 3005-3010.

    [10] [10] GARSTECKI P, FUERSTMAN M J, STONE H A, et al.. Formation of droplets and bubbles in a mi. cro. uidic T-junction: scaling and mechanism of break-up[J]. Lab Chip, 2006, 6(3): 437-446.

    [11] [11] XU J H, LI S W, TAN J, et al.. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Micro.uid. Nanoflu. id, 2008, 5(6): 711-717.

    [12] [12] XU Q Y, NAKAJIMA M. The generation of highly monodisperse droplets through the breakup of hydro. dynamically focused microthread in a micro.uidic de. vice[J]. Appl. Phys. Lett, 2004, 85(17): 3726-3728.

    [13] [13] ANNA S L, BONTOUX N, STONE H A. For. mation of dispersions using“flow focusing”in micro. channels[J]. Appl. Phys. Lett, 2003, 82(3): 364-366.

    [14] [14] YOBAS L, MARTENS S, ONG W L, et al.. High-performance flow-focusing geometry for sponta. neous generation of monodispersed droplets[J]. Lab Chip, 2006, 6(8): 1073-1079.

    [15] [15] XIONG R Q, BAI M, CHUNG J N. Formation of bubbles in a simple co-flowing micro-channel[J]. Micromech. Microeng, 2007, 17(5): 1002-1011.

    [16] [16] HONG Y P, WANG F J. Flow rate effect on droplet control in a co-flowing micro.uidic device[J]. Micro.uid. Nano.uid, 2007, 3(3): 341-346.

    [17] [17] CRAMER C, FISCHER P, WINDHAB E J. Drop formation in a co-flowing ambient fluid[J]. Chem. Eng. Sci, 2004, 59(15): 3045-3058.

    [18] [18] MARK B R, ADAM R A, ASSAF R, et al.. High throughput production of single core double emul. sions in a parallelized microfluidic device[J]. Lab Chip, 2012, 12(4): 802-807.

    [19] [19] TAKASI N and TORII T. Microfluidic large-scale integration on a chip for mass production of monodis. perse droplets and particles[J]. Lab Chip, 2008, 8: 287-293.

    [20] [20] JEONG H H, YELLESWARAPU V R, YADAU. ALI S, et al.. Kilo-scale droplet generation in three-dimensional monolithic elastomer device(3D MED)[J]. Lab Chip, 2015, 15(23): 4387-4392.

    [21] [21] YANG CG, XU ZR, LEE A P, et al.. A micro. fluidic concentration-gradient droplet array generator for the production of multi-color nanoparticles[J]. Lab Chip, 2013, 13(14): 2815-2820.

    [22] [22] JAN G, PIOTR M K, SLAWOMIR J, et al.. Au. tomated high-throughput generation of droplets[J]. Lab Chip, 2011, 11(21): 3593-3595.

    [23] [23] YELLESWARAPU V R, JEONG H H, YA. DAVALI S Y, et al.. Ultra-high throughput detec. tion(1 million droplets per second) of fluorescent droplets using a cell phone camera and time domain encoded optofluidics[J]. Lab Chip, 2017, 17(6): 1083-1094.

    [24] [24] KAWAI K, FUJII M, UCHIKOSHI J, et al.. Continuous generation of femtolitre droplets using multistage dividing microfluidic channel[J]. Current Applied Physics, 2012, 12: S33-S37.

    [25] [25] HATCH A C, FISHER J S, TOVAR A R, et al.. 1-Million droplet array with wide-field fluorescence imaging for digital PCR[J]. Lab Chip, 2011, 11(22): 3838-3845.

    [26] [26] YAN Y, GUO D, WEN S Z. Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2012, 84: 591-601.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Wu-ping, TANG Yu-guo, LI Hai-wen, JIANG Ke-ming, LI Cong, ZHANG Tao, ZHANG Zhi-qiang. D esign of high th roughput d roplet gen eration ch ip[J]. Optics and Precision Engineering, 2020, 28(12): 2636

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 26, 2020

    Accepted: --

    Published Online: Jan. 19, 2021

    The Author Email: Hai-wen LI (lihw@sibet.ac.cn)

    DOI:10. 37188/ope. 20202812. 2636

    Topics