Journal of Innovative Optical Health Sciences, Volume. 16, Issue 4, 2350009(2023)

Cerebrovascular segmentation from mesoscopic optical images using Swin Transformer

Yuxin Li1... Qianlong Zhang1, Hang Zhou2, Junhuai Li1, Xiangning Li3,4, and Anan Li34,* |Show fewer author(s)
Author Affiliations
  • 1Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, P. R. China
  • 2School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, P. R. China
  • 3Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics MoE Key, Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
  • 4HUST-Suzhou Institute for Brainsmatics, Suzhou 215123, P. R. China
  • show less
    References(35)

    [1] The neurovascular unit — concept review. Acta Physiol., 210, 790-798(2014).

    [2] Neuronal and vascular interactions. Annu. Rev. Neurosci., 38, 25-46(2015).

    [3] 3D BrainCV: Simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. Neuroimage, 87, 199-208(2014).

    [4] Blood vessel segmentation algorithms — review of methods, datasets and evaluation metrics. Comput. Methods Prog. Biomed., 158, 71-91(2018).

    [5] A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal., 13, 819-845(2009).

    [6] Learning-based algorithms for vessel tracking: A review. Comput. Med. Imag. Graph., 89, 101840(2021).

    [7] Vascular active contour for vessel tree segmentation. IEEE Trans. Biomed. Eng., 58, 1023-1032(2011).

    [8] Accurate vessel segmentation with constrained B-snake. IEEE Trans. Image Process., 24, 2440-2455(2015).

    [9] Sequential Monte Carlo tracking for marginal artery segmentation on CT angiography by multiple cue fusion. Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 518-525(2013).

    [10] Multi-scale vessel enhancement filtering. Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 130-137(1998).

    [11] Automatic 2D/3D vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imag., 37, 438-450(2018).

    [12] Ensemble of deep learning cascades for segmentation of blood vessels in confocal microscopy images. IEEE Conf. Applied Imagery Pattern Recognition Workshop (AIPR), 1-7(2021).

    [13] Anatomical modeling of brain vasculature in two-photon microscopy by generalizable deep learning. BME Front., 2020, 8620932(2020).

    [14] Automatic graph-based modeling of brain microvessels captured with two-photon microscopy. IEEE J. Biomed. Health Inform., 23, 2551-2562(2019).

    [15] Deep convolutional neural networks for segmenting 3D in vivo multi-photon images of vasculature in Alzheimer disease mouse models. PLoS One, 14, e0213539(2019).

    [16] Attention is all you need. Neural Inf. Process. Syst., 30, 5998-6008(2017).

    [17] [17] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. Yuille, Y. Zhou, “TransUnet: Transformers make strong encoders for medical image segmentation,” preprint (2021), arXiv: 2102. 04306.

    [18] [18] Y. Zhang, H. Liu, Q. Hu, “Transfuse: Fusing Transformers and CNNs for medical image segmentation,” preprint (2021), arXiv:2102.08005.

    [19] Generative consistency for semi-supervised cerebrovascular segmentation from TOF-MRA. IEEE Trans. Med. Imag., 42, 346-353(2023).

    [20] Weakly-supervised cerebrovascular segmentation network with shape prior and model indicator. Int. Conf. Multimedia Retrieval (ICMR), 668-676(2022).

    [21] Swin Transformer: Hierarchical vision Transformer using shifted windows. IEEE/CVF Int. Conf. Computer Vision (ICCV), 9992-10002(2021).

    [22] A transformer-based framework for automatic COVID19 diagnosis in chest CTs. IEEE/CVF Int. Conf. Computer Vision (ICCV), 513-518(2021).

    [23] SwinNet: Swin Transformer drives edge-aware RGB-D and RGB-T salient object detection. IEEE Trans. Circuits Syst. Video Technol., 32, 4486-4497(2022).

    [24] [24] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, M. Wang, “Swin-Unet: Unet-like pure Transformer for medical image segmentation,” preprint (2021), arXiv:2105.05537.

    [25] High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat. Commun., 7, 12142(2016).

    [26] High-definition imaging using line-illumination modulation microscopy. Nat. Methods, 18, 309-315(2021).

    [27] V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Int. Conf. 3D Vision, 565-571(2016).

    [28] MTPA_Unet: Multi-scale Transformer-position attention retinal vessel segmentation network joint Transformer and CNN. Sensors, 22, 4592(2022).

    [29] Strided U-Net model: Retinal vessels segmentation using dice loss. Digital Image Computing: Techniques and Applications (DICTA), 1-8(2018).

    [30] clDice — a novel topology-preserving loss function for tubular structure segmentation. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), 16560-16569(2021).

    [31] Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell., 15, 850-863(1993).

    [32] [32] O. U. Aydin, A. A. Taha, A. Hilbert, A. A. Khalil, I. Galinovic, J. B. Fiebach, D. Frey, V. I. Madai, “On the usage of average Hausdorff distance for segmentation performance assessment: Hidden bias when used for ranking,” preprint (2020), arXiv:2009.00215.

    [33] [33] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, O. Ronneberger, “3D U-Net: Learning dense volumetric segmentation from sparse annotation,” preprint (2016), arXiv:1606.06650.

    [34] Fully convolutional networks for semantic segmentation. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), 3431-3440(2015).

    [35] VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage, 170, 446-455(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yuxin Li, Qianlong Zhang, Hang Zhou, Junhuai Li, Xiangning Li, Anan Li. Cerebrovascular segmentation from mesoscopic optical images using Swin Transformer[J]. Journal of Innovative Optical Health Sciences, 2023, 16(4): 2350009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 11, 2023

    Accepted: Mar. 30, 2023

    Published Online: Jul. 28, 2023

    The Author Email: Li Anan (aali@hust.edu.cn)

    DOI:10.1142/S1793545823500098

    Topics