Laser Journal, Volume. 45, Issue 6, 161(2024)

Stacking Broad learning 3D object recognition network based on dynamic graph features

LI Weilin1... SUN Ye2 and SONG Wei1,* |Show fewer author(s)
Author Affiliations
  • 1School of Information Science and Technology, North China University of Technology, Beijing 100144, China
  • 2Beijing Industrial Chip Innovation Center, Beijing 100094, China
  • show less
    References(15)

    [3] [3] Lei H, Jiang G, Quan L. Fast Descriptors and Correspondence Propagation for Robust Global Point Cloud Registration[J]. IEEE Transactions on Image Processing, 2017, 26(8): 3614-3623.

    [4] [4] Guo Y, Bennamoun M, Sohel F, et al. 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2270-2287.

    [5] [5] Guo Y, Wang H, Hu Q, et al. Deep Learning for 3D Point Clouds: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338-4364.

    [6] [6] Su H, Maji S, Kalogerakis E, et al. Multi-view Convolutional Neural Networks for 3D Shape Recognition[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 945-953.

    [7] [7] Maturana D, Scherer S. Voxnet: A 3d convolutional neural network for real-time object recognition[C]//2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2015: 922-928.

    [8] [8] Qi C R, Su H, Mo K, et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 652-660.

    [9] [9] Qi C R, Yi L, Su H, et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[J]. Advances in Neural Information Processing Systems, 2017, 30: 5105-5114.

    [10] [10] Song W, Li D, Sun S, et al. 2D&3DHNet for 3D object classification in LiDAR point cloud[J]. Remote Sensing, 2022, 14(13): 3146.

    [11] [11] Wang Y, Sun Y, Liu Z, et al. Dynamic Graph CNN for Learning on Point Clouds[J]. ACM Transactions on Graphics (tog), 2019, 38(5): 1-12.

    [12] [12] Chen C L P, Liu Z. Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 29(1): 10-24.

    [13] [13] Tian Y, Chen L, Song W, et al. DGCB-Net: Dynamic Graph Convolutional Broad Network for 3D Object Recognition in Point Cloud[J]. Remote Sensing, 2020, 13(1): 66.

    [14] [14] Liu Z, Chen C L P, Feng S, et al. Stacked broad learning system: From incremental flatted structure to deep model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(1): 209-222.

    [15] [15] Hoerl A E, Kennard R W. Ridge regression: Biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.

    [16] [16] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

    [17] [17] Song W, Zhang L, Tian Y, et al. CNN-based 3D object classification using Hough space of LiDAR point clouds[J]. Human-centric Computing and Information Sciences, 2020, 10: 1-14.

    Tools

    Get Citation

    Copy Citation Text

    LI Weilin, SUN Ye, SONG Wei. Stacking Broad learning 3D object recognition network based on dynamic graph features[J]. Laser Journal, 2024, 45(6): 161

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 12, 2023

    Accepted: Nov. 26, 2024

    Published Online: Nov. 26, 2024

    The Author Email: Wei SONG (sw@ncut.edu.cn)

    DOI:10.14016/j.cnki.jgzz.2024.06.161

    Topics