Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1240(2024)
Effect of Rare-Earth Doping on Dielectric and Energy Storage Performance of Sodium Niobate-Based Ceramics
[1] [1] LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Adv Mater, 2010, 22(8): E28-E62.
[2] [2] HAN K, LI Q, CHANTHAD C, et al. A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density[J]. Adv Funct Mater, 2015, 25(23): 3505-3513.
[3] [3] SHERRILL S A, BANERJEE P, RUBLOFF G W, et al. High to ultra-high power electrical energy storage[J]. Phys Chem Chem Phys, 2011, 13(46): 20714-20723.
[4] [4] MUHAMMAD R, IQBAL Y, REANEY I M. BaTiO3-Bi(Mg2/3Nb1/3) O3 ceramics for high-temperature capacitor applications[J]. J Am Ceram Soc, 2016, 99(6): 2089-2095.
[5] [5] SUN Z X, WANG Z, TIAN Y, et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics[J]. Adv Electron Mater, 2020, 6(1): 1900698.
[6] [6] QU B Y, DU H L, YANG Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability[J]. J Mater Chem C, 2016, 4(9): 1795-1803.
[7] [7] LIU Z, LU T, YE J M, et al. Antiferroelectrics for energy storage applications: a review[J]. Adv Mater Technol, 2018, 3(9): 1800111.
[8] [8] HUANG B Y, LU Z X, ZHANG Y, et al. Antiferroelectric polarization switching and dynamic scaling of energy storage: a Monte Carlo simulation[J]. J Appl Phys, 2016, 119(17): 174103.
[9] [9] HAO X H, WANG Y, ZHANG L, et al. Composition-dependent dielectric and energy-storage properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thick films[J]. Appl Phys Lett, 2013, 102(16): 163903.
[10] [10] ZHANG Q A, LIU X L, ZHANG Y, et al. Effect of barium content on dielectric and energy storage properties of (Pb, La, Ba)(Zr, Sn, Ti)O3 ceramics[J]. Ceram Int, 2015, 41(2): 3030-3035.
[11] [11] GAO J, ZHANG Y C, ZHAO L, et al. Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties[J]. J Mater Chem A, 2019, 7(5): 2225-2232.
[12] [12] LI G, LIU H, ZHAO L, et al. Antiferroelectric order and Ta-doped AgNbO3 with higher energy storage density[J]. J Appl Phys, 2019, 125(20): 204103.
[13] [13] HAN K, LUO N N, JING Y, et al. Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics[J]. Ceram Int, 2019, 45(5): 5559-5565.
[14] [14] LUO N N, HAN K, ZHUO F P, et al. Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density[J]. J Mater Chem A, 2019, 7(23): 14118-14128.
[15] [15] QI H, ZUO R Z, XIE A W, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains[J]. Adv Funct Mater, 2019, 29(35): 1903877.
[16] [16] PANG F H, CHEN X L, SHI J P, et al. Bi(Mg0.5Sn0.5)O3-doped NaNbO3 lead-free ceramics achieve excellent energy-storage and charge/discharge performances[J]. ACS Sustain Chem Eng, 2021, 9(13): 4863-4871.
[17] [17] ZUO R Z, FU J A, QI H. Stable antiferroelectricity with incompletely reversible phase transition and low volume-strain contribution in BaZrO3 and CaZrO3 substituted NaNbO3 ceramics[J]. Acta Mater, 2018, 161: 352-359.
[18] [18] LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases[J]. J Eur Ceram Soc, 2018, 38(15): 4939-4945.
[19] [19] JIANG J E, MENG X J, LI L, et al. Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering[J]. Energy Storage Mater, 2021, 43: 383-390.
[20] [20] CHEN M, YAO X, ZHANG L Y. Grain size dependence of dielectric and field-induced strain properties of chemical prepared (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics[J]. Ceram Int, 2002, 28(2): 201-207.
[21] [21] ZHONG Michang, LU Biao, ZOU Yixuan, et al. J Chin Ceram Soc, 2019, 47(6): 764-770.
[22] [22] CHANG Shaoyi, MAO Haijun, WANG Fenglin, et al. Guangzhou Chem Ind, 2023, 51(4): 75-77.
[23] [23] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.
[24] [24] WEI Tian. Preparation and properties of sodium niobate-based dielectric ceramics for energy storage[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[25] [25] ZHANG Xiaoying. Effects of variable-valence elements Eu/Sm-doping on the thermoelectric performance of BiCuSeO[D]. Dalian: Dalian University of Technology, 2020.
[26] [26] YAO Z H, SONG Z, HAO H A, et al. Homogeneous/inhomogeneous- structured dielectrics and their energy-storage performances[J]. Adv Mater, 2017, 29(20): 1601727.
[27] [27] YAO F Z, YUAN Q B, WANG Q, et al. Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films[J]. Nanoscale, 2020, 12(33): 17165-17184.
[28] [28] ZHANG H B, WEI T, ZHANG Q, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors[J]. J Mater Chem C, 2020, 8(47): 16648-16667.
[29] [29] LIU B, CHEN W, ZHANG Y J, et al. Distribution regularity of breakdown field strength of high voltage ceramic capacitor[C]// Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials (Cat. No.00CH36347). Xi'an, China, 2002: 1037-1040.
Get Citation
Copy Citation Text
WANG Chuanmin, ZHANG Haibo, GUO Xin, XIAO Jianzhong, ZHANG Xiaodong, ZHANG Shunping, XIE Bing, TAN Hua. Effect of Rare-Earth Doping on Dielectric and Energy Storage Performance of Sodium Niobate-Based Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1240
Category:
Received: Aug. 31, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Hua TAN (hua_tan@hust.edu.cn)