Acta Optica Sinica, Volume. 41, Issue 1, 0114004(2021)

Research Progress of Semiconductor Interband Cascade Lasers

Yi Zhang1,2, Cheng'ao Yang1,2, Jinming Shang1,2, Yihang Chen1,2, Tianfang Wang1,2, Yu Zhang1,2、*, Yingqiang Xu1,2, Bing Liu3、**, and Zhichuan Niu1,2,3、***
Author Affiliations
  • 1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    References(153)

    [1] Christensen L E, Mansour K, Yang R Q. Thermoelectrically cooled interband cascade laser for field measurements[J]. Optical Engineering, 49, 111119(2010).

    [3] Wysocki G, Bakhirkin Y, So S et al. Dual interband cascade laser based trace-gas sensor for environmental monitoring[J]. Applied Optics, 46, 8202-8210(2007).

    [4] Parameswaran K R, Rosen D I, Allen M G et al. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements[J]. Applied Optics, 48, B73-B79(2009).

    [5] Bauer A, Rößner K, Lehnhardt T et al. Mid-infrared semiconductor heterostructure lasers for gas sensing applications[J]. Semiconductor Science and Technology, 26, 014032(2010).

    [7] Dong L, Yu Y, Li C et al. Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell[J]. Optics Express, 23, 19821-19830(2015).

    [8] Joullie A, Christol P, Baranov A N et al. Mid-infrared 2-5 μm heterojunction laser diodes[M]. Solid-State Mid-Infrared Laser Source, Heidelberg: Springer, 89, 1-61(2003).

    [9] Soibel A, Wright M W, Farr W H et al. Midinfrared interband cascade laser for free space optical communication[J]. IEEE Photonics Technology Letters, 22, 121-123(2010).

    [11] Turner G W, Choi H K, Manfra M J. Ultralow-threshold (50 A/cm 2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm[J]. Applied Physics Letters, 72, 876-878(1998).

    [12] Mermelstein C, Simanowski S, Mayer M et al. Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes[J]. Applied Physics Letters, 77, 1581-1583(2000).

    [13] [13] Zhang YG, Li AZ, Zheng YL, et al., 2001, 227/228: 582- 585.

    [16] Budni P A, Ibach C R, Setzler S D et al. 50-mJ, Q-switched, 2.09-μm holmium laser resonantly pumped by a diode-pumped 1.9-μm thulium laser[J]. Optics Letters, 28, 1016-1018(2003).

    [17] Zhang Y G, Zheng Y L, Lin C et al[J]. Continuous Wave Performance and Tunability of MBE Grown 2.1 μm InGaAsSb/AlGaAsSb MQW lasers Chinese Physics Letters, 2006, 2262-2265.

    [19] Chen J F, Kipshidze G, Shterengas L. High-power 2 diode lasers with asymmetric waveguide[J]. IEEE Journal of Quantum Electronics, 46, 1464-1469(2010).

    [22] Shterengas L, Belenky G, Kisin M V et al. High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%[J]. Applied Physics Letters, 90, 011119(2007).

    [23] Xie S W, Yang C G, Huang S S et al. 2.1 μm InGaSb quantum well lasers exhibiting the maximum conversion efficiency of 27.5% with digitally grown AlGaAsSb barriers and gradient layers[J]. Superlattices and Microstructures, 130, 339-345(2019).

    [24] Kim J G, Shterengas L, Martinelli R U et al. High-power room-temperature continuous wave operation of type-I In(Al)GaAsSb/GaSb diode lasers at wavelengths greater than 2.5 μm[C]∥Novel In-Plane Semiconductor Lasers III. Sarnoff Corporation, CN530, NJ, 08543-5300, 2004.

    [27] Shterengas L, Belenky G, Kipshidze G et al. Room temperature operated 3.1-μm type-I GaSb-based diode lasers with 80 mW continuous wave output power[J]. Applied Physics Letters, 92, 171111(2008).

    [29] Belenky G, Shterengas L, Wang D et al. Continuous wave operated 3.2 μm type-I quantum-well diode lasers with the quinary waveguide layer[J]. Semiconductor Science and Technology, 24, 115013(2009).

    [31] Hosoda T, Kipshidze G, Tsvid G et al. Type-I GaSb-based laser diodes operating in 3.1- to 3.3-μm wavelength range[J]. IEEE Photonics Technology Letters, 22, 718-720(2010).

    [32] Belenky G, Shterengas L, Kipshidze G et al. Type-I diode lasers for spectral region above 3 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1426-1434(2011).

    [33] Hosoda T, Feng T, Shterengas L et al. High power cascade diode lasers emitting near 2 μm[J]. Applied Physics Letters, 108, 131109(2016).

    [34] Shterengas L, Lang R, Kipshidze G et al. Cascade type-I quantum well diode lasers emitting 960 mW near 3 μm[J]. Applied Physics Letters, 105, 161112(2014).

    [36] Hosoda T, Wang M, Shterengas L et al. Three stage cascade diode lasers generating 500 mW near 3.2 μm[J]. Applied Physics Letters, 107, 111106(2015).

    [37] Belyanin A A, Smowton P M, Shterengas L et al. Type-I QW cascade diode lasers with 830 mW of CW power at 3 μm[J]. Proceedings of SPIE, 9382, 93820X(2015).

    [40] Feng T, Hosoda T, Shterengas L et al. Two-step narrow ridge cascade diode lasers emitting near 2 μm[J]. IEEE Photonics Technology Letters, 29, 485-488(2017).

    [42] Hofstetter D, Beck M, Aellen T et al. Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler[J]. Applied Physics Letters, 78, 1964-1966(2001).

    [46] Evans A, Nguyen J, Slivken S et al. Quantum-cascade lasers operating in continuous-wave mode above 90 ℃ at λ~5.25 μm[J]. Applied Physics Letters, 88, 051105(2006).

    [47] Darvish S R, Zhang W, Evans A et al. High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~7.8 μm[J]. Applied Physics Letters, 89, 251119(2006).

    [48] Lyakh A, Pflugl C, Diehl L et al. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm[J]. Applied Physics Letters, 92, 111110(2008).

    [49] Bai Y, Slivken S, Darvish S R et al. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency[J]. Applied Physics Letters, 93, 021103(2008).

    [52] Zhang J C, Wang L J, Zhang W et al. Holographic fabricated continuous wave operation of distributed feedback quantum cascade lasers at λ≈8.5 μm[J]. Journal of Semiconductors, 32, 044008(2011).

    [53] Bai Y, Bandyopadhyay N, Tsao S et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 98, 181102(2011).

    [54] Zhang J C, Liu F Q, Tan S et al. High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth[J]. Applied Physics Letters, 100, 112105(2012).

    [55] Lyakh A, Suttinger M, Go R et al. 5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 109, 121109(2016).

    [57] Bandyopadhyay N, Bai Y, Gokden B et al. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 μm[J]. Applied Physics Letters, 97, 131117(2010).

    [61] Zhang Y, Shao F H, Yang C A et al. Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm[J]. Chinese Physics B, 27, 124207(2018).

    [63] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [64] Esaki L, Tsu R. Superlattice and negative differential conductivity in semiconductors[J]. IBM Journal of Research and Development, 14, 61-65(1970).

    [66] Meyer J R, Vurgaftman I, Yang R Q et al. Type-II and type-I interband cascade lasers[J]. Electronics Letters, 32, 45-46(1996).

    [67] Vurgaftman I, Bewley W W, Felix C L et al. MID-IR vertical cavity surface-emitting lasers[J]. MRS Proceedings, 484, 95(1997).

    [70] Yang B H, Zhang D, Yang R Q et al. Mid-infrared interband cascade lasers with quantum efficiencies >200%[J]. Applied Physics Letters, 72, 2220-2222(1998).

    [73] Olafsen L J, Aifer E H, Vurgaftman I et al. Near-room-temperature mid-infrared interband cascade laser[J]. Applied Physics Letters, 72, 2370-2372(1998).

    [74] Bruno J D, Bradshaw J L, Yang R Q et al. Low-threshold interband cascade lasers with power efficiency exceeding 9%[J]. Applied Physics Letters, 76, 3167-3169(2000).

    [75] Yang R Q, Bradshaw J L, Bruno J D et al. Power, efficiency, and thermal characteristics of type-II interband cascade lasers[J]. IEEE Journal of Quantum Electronics, 37, 282-289(2001).

    [78] Yang R Q, Bradshaw J L, Bruno J D et al. Mid-infrared type-II interband cascade lasers[J]. IEEE Journal of Quantum Electronics, 38, 559-568(2002).

    [80] Yang R Q, Hill C J, Yang B H et al. Continuous-wave operation of distributed feedback interband cascade lasers[J]. Applied Physics Letters, 84, 3699-3701(2004).

    [91] Canedy C L, Bewley W W, Lindle J R et al. High-power and high-efficiency midwave-infrared interband cascade lasers[J]. Applied Physics Letters, 88, 161103(2006).

    [94] Canedy C L, Kim C S, Kim M et al. High-power, narrow-ridge, mid-infrared interband cascade lasers[J]. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 26, 931-934(2007).

    [95] Kim M, Canedy C L, Bewley W W et al. Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature[J]. Applied Physics Letters, 92, 191110(2008).

    [98] Bewley W W, Canedy C L, Kim C S et al. Advances in the growth and performance of antimonide-based mid-infrared interband cascade lasers[C]∥2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM), May 31-June 4, , 1-4(2010).

    [99] Canedy C L, Abell J, Bewley W W, Microelectronics: Materials et al. 28(3): C3G8-C3G12. Processing, Measurement, Phenomena(2010).

    [103] Bewley W W, Kim C S, Kim M et al. A new generation of interband cascade lasers. [C]∥ 15th International Conference on Narrow Gap Systems (NGS15). AIP Conference Proceedings, Volume 1416. AIP Conference Proceedings, 1416, 46-48(2011).

    [104] Vurgaftman I, Bewley W W, Canedy C L et al. Mid-IR type-II interband cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1435-1444(2011).

    [106] Vurgaftman I, Bewley W W, Merritt C D et al. Physics of interband cascade lasers[J]. Proceedings of SPIE, 8268, 82681F(2012).

    [108] Abell J, Weih R, Canedy C L et al. Interband cascade lasers with external differential quantum efficiency >50% at room temperature. [C]∥Mid-infrared Coherent Sources, MTh4B, 1(2013).

    [109] Bauer A, Dallner M, Kamp M et al. Shortened injector interband cascade lasers for 3.3- to 3.6 μm emission[J]. Optical Engineering, 49, 111117(2010).

    [110] Janiak F, Sek G, Motyka M et al. Increasing the optical transition oscillator strength in GaSb-based type II quantum wells[J]. Applied Physics Letters, 100, 231908(2012).

    [116] Kim M, Bewley W W, Canedy C L et al. High-power continuous-wave interband cascade lasers with 10 active stages[J]. Optics Express, 23, 9664-9672(2015).

    [117] Hamp M J, Cassidy D T, Robinson B J et al. Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers[J]. IEEE Photonics Technology Letters, 10, 1380-1382(1998).

    [119] Lee B L, Lin C F, Lai J W et al. Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes[J]. Electronics Letters, 34, 1230-1231(1998).

    [126] Kim M, Kim C S, Bewley W W et al. Interband cascade lasers with high CW power and brightness[J]. Proceedings of SPIE, 9370, 937029(2015).

    [130] Koeth J, Weih R, Scheuermann J et al. Mid infrared DFB interband cascade lasers[J]. Proceedings of SPIE, 10403, 1040308(2017).

    [131] Scheuermann J. Weih R, von Edlinger M, et al. Single-mode interband cascade lasers emitting below 2.8 μm[J]. Applied Physics Letters, 106, 161103(2015).

    [137] Rassel S M S, Li L, Li Y Y et al. High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm[J]. Optical Engineering, 57, 011021(2018).

    [140] Kim C S, Bewley W W, Merritt C D et al. Improved mid-infrared interband cascade light-emitting devices[J]. Optical Engineering, 57, 011002(2017).

    [141] Li J V, Yang R Q, Hill C J et al. Interband cascade detectors with room temperature photovoltaic operation[J]. Applied Physics Letters, 86, 101102(2005).

    [144] Tian Z B, Schuler-Sandy T, Krishna S. Electron barrier study of mid-wave infrared interband cascade photodetectors[J]. Applied Physics Letters, 103, 083501(2013).

    Tools

    Get Citation

    Copy Citation Text

    Yi Zhang, Cheng'ao Yang, Jinming Shang, Yihang Chen, Tianfang Wang, Yu Zhang, Yingqiang Xu, Bing Liu, Zhichuan Niu. Research Progress of Semiconductor Interband Cascade Lasers[J]. Acta Optica Sinica, 2021, 41(1): 0114004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Sep. 2, 2020

    Accepted: Nov. 5, 2020

    Published Online: Feb. 23, 2021

    The Author Email: Zhang Yu (zhangyu@semi.ac.cn), Liu Bing (liubing@baqis.ac.cn), Niu Zhichuan (zcniu@semi.ac.cn)

    DOI:10.3788/AOS202141.0114004

    Topics