Optical Instruments, Volume. 45, Issue 5, 62(2023)

A dual-branch guided network for depth completion

Xiaofei QIN, Wenkai HU, Dongxian BAN, Hongyu GUO, and Jing YU
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    Figures & Tables(11)
    Model architecture
    Spectral Residual Block
    Method of using attention module
    The variant method of using attention module
    The results of depth completion.
    • Table 1. The comparison of metrics parameters for the input branch

      View table
      View in Article

      Table 1. The comparison of metrics parameters for the input branch

      算法 RMSE↓REL↓MAE↓δt= 1.05)↑ δt= 1.10)↑ δt=1.25)↑
      Image-Guided0.0490.0650.04352.2168.5192.87
      Mask-Guided0.0780.0970.05644.7660.2089.63
      Joint-Guided0.0440.0600.03857.2276.4595.67
    • Table 2. The comparison of metrics parameters between different number of SRB

      View table
      View in Article

      Table 2. The comparison of metrics parameters between different number of SRB

      N   RMSE↓REL↓MAE↓δt=1.05)↑ δt=1.10)↑ δt=1.25)↑
      30.0630.0950.05849.2167.1293.11
      40.0500.0730.04256.3575.3195.27
      50.0420.0570.03560.4881.2096.83
      60.0410.0570.03560.7181.3296.80
    • Table 3. The comparison of metrics parameters with or without attention mechanism

      View table
      View in Article

      Table 3. The comparison of metrics parameters with or without attention mechanism

      算法 RMSE↓REL↓MAE↓δt=1.05)↑ δt=1.10)↑ δt=1.25)↑
      JG0.0420.0570.03560.4881.2096.83
      JG+Att0.0360.0460.02573.6788.9297.23
      JG+Att- improved 0.0320.0450.02474.3589.7197.90
    • Table 4. The comparison of metrics parameters on ClearGrasp dataset

      View table
      View in Article

      Table 4. The comparison of metrics parameters on ClearGrasp dataset

      算法RMSE↓REL↓MAE↓δt=1.05)↑ δt=1.10)↑ δt=1.25)↑
      JBF[26]0.3890.5300.35827.6137.2851.32
      MRF[27]0.3470.4970.31138.3552.6365.19
      AD[28]0.3150.4890.29741.2661.2971.24
      DenseDepth[30]0.2700.4280.25918.6734.3458.29
      DM[29]0.0490.0750.03859.6775.8595.96
      DeepCompletion[11]0.0540.0810.04544.5369.7195.77
      ClearGrasp[17]0.0380.0480.02772.9487.8897.17
      Ours0.0320.0450.02474.3589.7197.90
    • Table 5. The comparison of metrics parameters on TransCG dataset

      View table
      View in Article

      Table 5. The comparison of metrics parameters on TransCG dataset

      算法 RMSE↓REL↓MAE↓δt=1.05)↑ δt=1.10)↑ δt=1.25)↑
      ClearGrasp[17]0.0540.0830.03750.4868.6895.28
      LIDF-Refine[18]0.0190.0340.01578.2294.2699.80
      DFNet[23]0.0180.0270.01283.7695.6799.71
      Ours0.0180.0250.01285.6996.4999.78
    • Table 6. The comparison of metrics parameters on cross-domain datasets

      View table
      View in Article

      Table 6. The comparison of metrics parameters on cross-domain datasets

      训练/测试算法 RMSE↓REL↓MAE↓δt=1.05)↑ δt=1.10)↑ δt=1.25)↑
      ClearGrasp/ TransCG ClearGrasp[17]0.0610.1080.04933.5954.7392.48
      LIDF-Refine[18]0.1460.2620.11513.7026.3957.95
      DFNet[23]0.0480.0880.03938.6562.4295.28
      Ours0.0360.0700.03445.4775.2196.02
      TransCG/ ClearGrasp ClearGrasp[17]0.0850.0950.05247.2670.7692.54
      LIDF-Refine[18]0.1520.2250.1399.8620.6346.02
      DFNet[23]0.0410.0540.03162.7483.3197.33
      Ours0.0320.0470.02969.2388.1497.80
    Tools

    Get Citation

    Copy Citation Text

    Xiaofei QIN, Wenkai HU, Dongxian BAN, Hongyu GUO, Jing YU. A dual-branch guided network for depth completion[J]. Optical Instruments, 2023, 45(5): 62

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 17, 2022

    Accepted: --

    Published Online: Dec. 27, 2023

    The Author Email:

    DOI:10.3969/j.issn.1005-5630.2023.005.008

    Topics