Chinese Optics Letters, Volume. 21, Issue 3, 033001(2023)

Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]

Yahui Liu and Yufei Ma*
Author Affiliations
  • National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
  • show less
    References(62)

    [1] Z. Zhang, F. Zhang, B. Xu, H. Xie, B. Fu, X. Lu, N. Zhang, S. Yu, J. Yao, Y. Cheng. High-sensitivity gas detection with air-lasing-assisted coherent Raman spectroscopy. Ultrafast Science, 2022, 9761458(2022).

    [2] Y. Hu, S. Qiao, Z. Lang, Y. He, Y. Ma. Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing. Opt. Express, 29, 5121(2021).

    [3] Y. Fu, J. Cao, K. Yamanouchi, H. Xu. Air-laser-based standoff coherent Raman spectrometer. Ultrafast Science, 2022, 9867028(2022).

    [4] Y. Ma, Y. He, Y. Tong, X. Yu, F. K. Tittel. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt. Express, 26, 32103(2018).

    [5] Z. Lang, S. Qiao, Y. He, Y. Ma. Quartz tuning fork-based demodulation of an acoustic signal induced by photo-thermo-elastic energy conversion. Photoacoustics, 22, 100272(2021).

    [6] R. Rousseau, Z. Loghmari, M. Bahriz, K. Chamassi, R. Teissier, A. N. Baranov, A. Vicet. Off-beam QEPAS sensor using an 11-µm DFB-QCL with an optimized acoustic resonator. Opt. Express, 27, 7435(2019).

    [7] S. Qiao, Y. He, Y. Ma. Trace gas sensing based on single-quartz-enhanced photoacoustic-photothermal dual spectroscopy. Opt. Lett., 46, 2449(2021).

    [8] Q. Wang, Z. Wang, W. Ren, P. Patimisco, A. Sampaolo, V. Spagnolo. Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork. Sens. Actuators B Chem., 268, 512(2018).

    [9] Y. Ma, Y. Hu, S. Qiao, Z. Lang, X. Liu, Y. He, V. Spagnolo. Quartz tuning forks resonance frequency matching for laser spectroscopy sensing. Photoacoustics, 25, 100329(2022).

    [10] R. Ghorbani, F. M. Schmidt. Real-time breath gas analysis of CO and CO2 using an EC-QCL. Appl. Phys. B, 123, 1432(2017).

    [11] Y. He, Y. Ma, Y. Tong, X. Yu, F. K. Tittel. HCN ppt-level detection based on a QEPAS sensor with amplified laser and a miniaturized 3D-printed photoacoustic detection channel. Opt. Express, 26, 9666(2018).

    [12] E. Lellouch, M. Gurwell, B. Butler, T. Fouchet, P. Lavvas, D. Strobel, B. Sicardy, A. Moullet, R. Moreno, D. Bockelée-Morvan. Detection of CO and HCN in Pluto’s atmosphere with ALMA. ICARUS, 286, 289(2017).

    [13] Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, F. K. Tittel. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork. Appl. Phys. Lett., 110, 031107(2017).

    [14] X. Liu, S. Qiao, Y. Ma. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering. Opt. Express, 30, 1304(2022).

    [15] Y. Ma, R. Lewicki, M. Razeghi, F. K. Tittel. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express, 21, 1008(2013).

    [16] L. Hu, C. Zheng, M. Zhang, K. Zheng, J. Zheng, Z. Song, X. Li, Y. Zhang, Y. Wang, F. K. Tittel. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy. Photoacoustics, 21, 100230(2021).

    [17] Y. Ma, Y. Hu, S. Qiao, Y. He, F. K. Tittel. Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy. Photoacoustics, 20, 100206(2020).

    [18] A. Kosterev, F. Tittel, G. Bearman. Advanced quartz-enhanced photoacoustic trace gas sensor for early fire detection. SAE Int. J. Aerosp., 1, 331(2008).

    [19] B. Su, Z. Luo, T. Wang, L. Liu. Experimental and numerical evaluations on characteristics of vented methane explosion. J. Cent. South Univ., 27, 2382(2020).

    [20] X. Liu, Y. Ma. Tunable diode laser absorption spectroscopy based temperature measurement with a single diode laser near 1.4 µm. Sensors, 22, 6095(2022).

    [21] S. Bürkle, L. Biondo, C.-P. Ding, R. Honza, V. Ebert, B. Böhm, S. Wagner. In-cylinder temperature measurements in a motored IC engine using TDLAS. Flow Turbul. Combust., 101, 139(2018).

    [22] C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, W. Cai. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration. Opt. Express, 23, 22494(2015).

    [23] X. Zhou, G. Zhao, J. Liu, Y. Zhou, X. Yan, Z. Li, W. Ma, S. Jia. Fiber pigtailed DFB laser-based optical feedback cavity enhanced absorption spectroscopy with a fiber-coupled EOM for phase correction. Opt. Express, 30, 6332(2022).

    [24] K. Zheng, C. Zheng, Y. Zhang, Y. Wang, F. K. Tittel. Review of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for gas sensing. Sensors, 18, 3646(2018).

    [25] Y. Ma, W. Feng, S. Qiao, Z. Zhao, S. Gao, Y. Wang. Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing. Opt. Express, 30, 18836(2022).

    [26] X. Liu, Y. Ma. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell. Chin. Opt. Lett., 20, 031201(2022).

    [27] K. Liu, J. Mei, W. Zhang, W. Chen, X. Gao. Multi-resonator photoacoustic spectroscopy. Sens. Actuators B Chem, 251, 632(2017).

    [28] Z. Gong, G. Wu, X. Jiang, H. Li, T. Gao, M. Guo, F. Ma, K. Chen, L. Mei, W. Peng, Q. Yu. All-optical high-sensitivity resonant photoacoustic sensor for remote CH4 gas detection. Opt. Express, 29, 13600(2021).

    [29] P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, V. Spagnolo. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev., 5, 011106(2018).

    [30] K. Krzempek, G. Dudzik, K. Abramski. Photothermal spectroscopy of CO2 in an intracavity mode-locked fiber laser configuration. Opt. Express, 26, 28861(2018).

    [31] T. Liang, S. Qiao, X. Liu, Y. Ma. Highly sensitive hydrogen sensing based on tunable diode laser absorption spectroscopy with a 2.1 µm diode laser. Chemosensors, 10, 321(2022).

    [32] M. Dong, C. Zheng, Y. Zhang, Y. Wang, F. K. Tittel. Herriott cell design with minimum volume and multiple reflection rings for infrared gas sensing. IEEE Photon. Technol. Lett., 31, 541(2019).

    [33] M. Graf, L. Emmenegger, B. Tuzson. Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy. Opt. Lett., 43, 2434(2018).

    [34] W. Feng, Y. Qu, Y. Gao, Y. Ma. Advances in fiber-based quartz enhanced photoacoustic spectroscopy for trace gas sensing. Microwave Opt. Technol. Lett., 63, 2031(2021).

    [35] L. Hu, C. Zheng, Y. Zhang, J. Zheng, Y. Wang, F. K. Tittel. Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing. Opt. Lett., 45, 1894(2020).

    [36] K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, F. K. Tittel. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl. Phys. B, 112, 461(2013).

    [37] R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy. Appl. Opt., 40, 4387(2001).

    [38] Y. He, Y. Ma, Y. Tong, X. Yu, F. K. Tittel. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Opt. Lett., 44, 1904(2019).

    [39] H. Chen, C. Chen, Y. Wang, H. Piao, P. Wang. Optical design and verification of multipass cell with two spherical mirrors using space equation method. IEEE Trans. Instrum. Meas., 70, 7002808(2021).

    [40] R. Cui, L. Dong, H. Wu, W. Ma, L. Xiao, S. Jia, W. Chen, F. K. Tittel. Three-dimensional printed miniature fiber-coupled multipass cells with dense spot patterns for ppb-level methane detection using a near-IR diode laser. Anal. Chem., 92, 13034(2020).

    [41] M. Mangold, B. Tuzson, M. Hundt, J. Jágerská, H. Looser, L. Emmenegger. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis. J. Opt. Soc. Am. A, 33, 913(2016).

    [42] B. Fang, N. Yang, W. Zhao, C. Wang, W. Zhang, W. Song, D. S. Venables, W. Chen. Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels. Appl. Opt., 58, 8743(2019).

    [43] D. R. Herriott, H. J. Schulte. Folded optical delay lines. Appl. Opt., 4, 883(1965).

    [44] D. Herriott, H. Kogelnik, R. Kompfner. Off-axis paths in spherical mirror interferometers. Appl. Opt., 3, 523(1964).

    [45] W. Ye, M. Dong, S. Miao, C. Zheng, Y. Wang, F. K. Tittel, D. Yao, G. Zhong. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC). Opt. Express, 26, 12081(2018).

    [46] J. B. McManus, P. L. Kebabian, M. S. Zahniser. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt., 34, 3336(1995).

    [47] Y. N. Cao, Z. Xu, X. Tian, G. Cheng, C. L. Liu, Y. L. Zhang. Generalized calculation model of different types of optical multi-pass cells based on refraction and reflection law. Opt. Laser Technol., 139, 106958(2021).

    [48] R. Cui, L. Dong, H. Wu, S. Li, X. Yin, L. Zhang, W. Ma, W. Yin, F. K. Tittel. Calculation model of dense spot pattern multi-pass cells based on a spherical mirror aberration. Opt. Lett., 44, 1108(2019).

    [49] R. Cui, L. Dong, H. Wu, W. Chen, F. K. Tittel. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns. Appl. Phys. Lett., 116, 091103(2020).

    [50] R. Kong, T. Sun, P. Liu, X. Zhou. Optical design and analysis of a two-spherical-mirror-based multipass cell. Appl. Opt., 59, 1545(2020).

    [51] H. Chen, C. Chen, Y. Wang. Auto-design of multi-pass cell with small size and long optical path length using parallel multi-population genetic algorithm. IEEE Sens. J., 22, 6518(2022).

    [52] J. Liu, Y. Chen, L. Xu, R. Kong, P. Liu, X. Zhou. Generalized optical design and optimization of multipass cells with independent circle patterns based on the Monte Carlo and Nelder-Mead simplex algorithms. Opt. Express, 29, 20250(2021).

    [53] H. M. Pickett, G. M. Bradley, H. L. Strauss. A new white type multiple pass absorption cell. Appl. Opt., 9, 2397(1970).

    [54] H. J. Bernstein, G. Herzberg. Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. I. The spectrum of fluoroform (CHF3) from 2.4µ to 0.7µ. J. Chem. Phys., 16, 30(1948).

    [55] A. Hudzikowski, A. Głuszek, K. Krzempek, J. Sotor. Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm. Opt. Express, 29, 26127(2021).

    [56] A. Hudzikowski, A. Gluszek, K. Krzempek, J. Sotor. Spherical mirrors based compact multipass cell with dense astigmatic-like spot pattern. Conference on Lasers and Electro-Optics(2019).

    [57] G. Cheng, Y.-N. Cao, X. Tian, J.-J. Chen, J.-J. Wang. Design and analysis of novel folded optical multi-pass cell. Front. Phys., 10, 907715(2022).

    [58] M. Wang, D. Wang, Y. Lv, P. Li, D. Li, Y. Li. In-situ laser detection of water vapor based on circular prism array multi-pass cell enhanced near-infrared absorption spectroscopy. Infrared Phys. Technol., 116, 103811(2021).

    [59] M. L. Thoma, R. Kaschow, F. J. Hindelang. A multiple-reflection cell suited for absorption measurements in shock tubes. Shock Waves, 4, 51(1994).

    [60] S. Qiao, Y. Ma, Y. He, P. Patimisco, A. Sampaolo, V. Spagnolo. Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL. Opt. Express, 29, 25100(2021).

    [61] S. Qiao, A. Sampaolo, P. Patimisco, V. Spagnolo, Y. Ma. Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell. Photoacoustics, 27, 100381(2022).

    [62] Y. Ma, C. Zheng, L. Hu, K. Zheng, F. Song, Y. Zhang, Y. Wang, F. K. Tittel. High-robustness near-infrared methane sensor system using self-correlated heterodyne-based light-induced thermoelastic spectroscopy. Sens. Actuators B Chem., 370, 132429(2022).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Yahui Liu, Yufei Ma, "Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]," Chin. Opt. Lett. 21, 033001 (2023)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Sep. 19, 2022

    Accepted: Nov. 7, 2022

    Published Online: Dec. 2, 2022

    The Author Email: Yufei Ma (mayufei@hit.edu.cn)

    DOI:10.3788/COL202321.033001

    Topics