Acta Photonica Sinica, Volume. 49, Issue 11, 59(2020)

Research Progress of Mid-infrared Femtosecond Sources Based on Optical Parametric Amplification (Invited)

Hua-bao CAO1, Hu-shan WANG1, Hao YUAN1,2, Xin LIU1,2, Pei HUANG1, Yi-shan WANG1、*, Wei ZHAO1, and Yu-xi FU1
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Institute of Optics and Precision Mechanics of CAS, Xi'an709, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    References(67)

    [1] OGUZHAN K, LUKE M. Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators[J]. Optics Express, 25, 32713-32721(2017).

    [2] HENRY T, ABIJITH K, ALEX L. Molecular fingerprinting with bright, broadband infrared frequency combs[J]. Optica, 5, 727-732(2018).

    [3] WOLTER B, PULLEN M, LE A. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene[J]. Science, 354, 308(2016).

    [4] HOHENLEUTNER M, LANGER F, SCHUBERT O. Real-time observation of interfering crystal electrons in high-harmonic generation[J]. Nature, 523, 572-575(2015).

    [5] WANG Chu-ji, SAHAY P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 9, 8230(2019).

    [6] JOVANOVIC I, XU G, WANDEL S. Mid-infrared laser system development for dielectric laser accelerators[J]. Physics Procedia, 52, 68(2014).

    [7] WHALEN P, PANAGIOTOPOULOS P, KOLESIK M. Extreme carrier shocking of intense long-wavelength pulses[J]. Physical Review A, 89, 023850(2014).

    [8] ASILYEV S, MOSKALEV I, MIROV M. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe[J]. Optical Materials Express, 7, 2636-2650(2017).

    [9] VASILYEV S, PEPPERS J, MOSKALEV I. ATu4A[J]. OSA Technical Digest, 4(2019).

    [10] OKAZAKI D, ARAI H, ANISIMOV A. Self-starting mode-locked Cr:ZnS laser using single-walled carbon nanotubes with resonant absorption at 2.4  μm[J]. Optics Letters, 44, 1750-1753(2019).

    [11] KOZLOVSKY V, FROLOV M, KOROSTELIN Y. Nanosecond-pulsed RT-operating at ~4 μm Fe:ZnSe laser pumped inside the cavity of a LD side-pumped Er:YLF laser[J]. Optics Express, 26, 24497-24505(2018).

    [12] CAPASSO F. CWD1[J]. OSA Technical Digest(2001).

    [13] YAO Yu, HOFFMAN A, GMACHL C. Mid-infrared quantum cascade lasers[J]. Nature Photonics, 6, 432-439(2012).

    [14] DUBIETIS A, JONUAUSKAS G, PISKARSKAS A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 88, 433(1992).

    [15] FU Yu-xi, TAKAHASHI E, ZHANG Qing-bin. Optimization and characterization of dual-chirped optical parametric amplification[J]. Journal of Optics, 17, 124001(2015).

    [16] SCHMIDT B, THIRÉ N, BOIVIN M. Frequency domain optical parametric amplification[J]. Nature Communications, 5, 3643(2014).

    [17] BOYD R[M]. Nonlinear Optics(2018).

    [18] LOZHKAREV V, FREIDMAN G, GINZBURG V. Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser[J]. Laser Physics, 15, 319-1333(2005).

    [19] LIN Y, NABEKAWA Y, MIDORIKAWA K. Optical parametric amplification of sub-cycle shortwave infrared pulses[J]. Nature Communications, 11, 3413(2020).

    [24] BALTUŠKA A, FUJI T, KOBAYASHI T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers[J]. Physical Review Letters, 88, 133901(2020).

    [25] DUBIETIS A, TAMOŠAUSKAS G, ŠUMINAS R. Ultrafast supercontinuum generation in bulk condensed media[J]. Lithuanian Journal of Physics, 57, 113-157(2017).

    [26] PERVAK V, AMOTCHKINA T, HAHNER D. Complementary Si/SiO2 dispersive mirrors for 2-4 µm spectral range[J]. Optics Express, 27, 34901-34906(2019).

    [27] HABEL F, PERVAK V. Dispersive mirror for the mid-infrared spectral range of 9–11.5  μm[J]. Applied Optics, 56, C71-C74(2017).

    [29] TOURNOIS P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems[J]. Optics Communications, 140, 245-249(1997).

    [30] BOCK M, GRAFENSTEIN L, GRIEBNER U. Generation of millijoule few-cycle pulses at 5  μm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier[J]. Journal of the Optical Society of America B, 35, C18-C24(2018).

    [31] GOLUBOVIC B, REED M. All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2[J]. Optics Letters, 23, 1760-1762(1998).

    [32] GRUETZMACHER J, SCHERER N. Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media[J]. Review of Scientific Instruments, 73, 2227-2236(2002).

    [33] WITTE T, ZEIDLER D, PROCH D. Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared[J]. Optics Letters, 27, 131-133(2002).

    [34] GHOTBI M, EBRAHIM-ZADEH M, PETROV V. Efficient 1 kHz femtosecond optical parametric amplification in BiB3O6 pumped at 800 nm[J]. Optics Express, 14, 10621-10626(2006).

    [35] BRIDA D, MANZONI C, CIRMI G. Generation of broadband mid-infrared pulses from an optical parametric amplifier[J]. Optics Express, 15, 15035-15040(2007).

    [36] BRADLER M, HOMANN C, RIEDLE E. Mid-IR femtosecond pulse generation on the microjoule level up to 5 μm at high repetition rates[J]. Optics Letters, 36, 4212-4214(2011).

    [37] ISAIENKO O, BORGUET E. Ultra-broadband sum-frequency vibrational spectrometer of aqueous interfaces based on a non-collinear optical parametric amplifier[J]. Optics Express, 20, 547-561(2012).

    [38] KANESHIMA K, ISHII N, TAKEUCHI K. Generation of carrier-envelope phase-stable mid-infrared pulses via dual-wavelength optical parametric amplification[J]. Optics Express, 24, 8660-8665(2016).

    [39] MORIMOTO T, SONO N, MIYAMOTO T. Generation of a carrier-envelope-phase-stable femtosecond pulse at 10 µm by direct down-conversion from a Ti:sapphire laser pulse[J]. Applied Physics Express, 10, 122701(2017).

    [40] FU Yu-xi, XUE Bing, MIDORIKAWA K. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification[J]. Applied Physics Letters, 112, 241105(2018).

    [41] FU Yu-xi, MIDORIKAWA K, TAKAHASHI E. Towards a petawatt-class fewcycle infrared laser system via dual-chirped optical parametric amplification[J]. Scientific Reports, 8, 7692(2018).

    [42] NUBBEMEYER T, KAUMANNS M, UEFFING M. 1  kW, 200  mJ picosecond thin-disk laser system[J]. Optics Letters, 42, 1381-1384(2017).

    [43] DIETZ T, JENNE M, BAUER D. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J]. Optics Express, 28, 11415-11423(2020).

    [44] ANDRIUKAITIS G, BALČIŪNAS T, ALIŠAUSKAS S. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier[J]. Optics Letters, 36, 2755-2757(2011).

    [45] RIGAUD P, WALLE A, HANNA M. Supercontinuum-seeded few-cycle mid-infrared OPCPA system[J]. Optics Express, 24, 26494-26502(2016).

    [46] THIRÉ N, MAKSIMENKA R, KISS B. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics[J]. Optics Express, 26, 26907-26915(2018).

    [47] THIRÉ N, MAKSIMENKA R, KISS B. 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise[J]. Optics Express, 25, 1505-1514(2017).

    [48] POPMINTCHEV T, CHEN M, OPMINTCHEV D. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287(2012).

    [49] WEISSHAUPT J, JUVÉ V, HOLTZ M. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses[J]. Nature Photonics, 8, 927(2014).

    [50] MITROFANOV A, VORONIN A, SIDOROV-BIRYUKOV D. Mid-infrared laser filaments in the atmosphere[J]. Scientific Reports, 5, 8368(2015).

    [51] SEIDEL M, XIAO X, HUSSAIN S. Multi-watt, multi-octave, mid-infrared femtosecond source[J]. Science Advance, 4, 1526(2018).

    [52] QU Shi-zhen, LIANG Hou-kun, LIU Kun. 9  μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2[J]. Optics Letters, 44, 2422-2425(2019).

    [53] BRIDGER M, NARANJO-MONTOYA O, TARASEVITCH A. Towards high power broad-band OPCPA at 3000 nm[J]. Optics Express, 27, 31330-31337(2019).

    [54] . Large aperture single crystal ZnGeP2 for high-energy applications[J]. Journal of Crystal Growth, 310, 1891(2008).

    [55] HEMMER M, SÁNCHEZ D, JELÍNEK M. 2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA[J]. Optics Letters, 40, 451-454(2015).

    [56] WANDEL S, LIN M, YIN Y. Parametric generation and characterization of femtosecond mid-infrared pulses in ZnGeP2[J]. Optics Express, 24, 5287-5299(2016).

    [57] SANCHEZ D, HEMMER M, BAUDISCH M. 7  μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2  μm[J]. Optica, 3, 147-150(2016).

    [58] KANAI T, MALEVICH P, KANGAPARAMBIL S. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier[J]. Optics Letters, 42, 683-686(2017).

    [59] STEINLE T, SÁNCHEZ D. Table-top high-energy 7  μm OPCPA and 260  mJ Ho:YLF pump laser[J]. Optics Letters, 44, 3194-3197(2019).

    [60] YIN Yan-chun, CHEW A, REN Xiao-ming. Towards terawatt sub-cycle long-wave infrared pulses via chirped optical parametric amplification and indirect pulse shaping[J]. Scientific Reports, 7, 45794(2017).

    [61] ZHANG Jing-wei, SCHULZE F. High-power, high-efficiency Tm:YAG and Ho:YAG thin-disk lasers[J]. Laser and Photonics Reviews, 12, 1700273(2018).

    [62] MECSEKI K, WINDELER M, MIAHNAHRI A. High average power 88  W OPCPA system for high-repetition-rate experiments at the LCLS x-ray free-electron laser[J]. Optics Letters, 44, 1257-1260(2019).

    [63] RIEDEL R, ROTHHARDT J, BEIL K. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification[J]. Optics Express, 22, 17607-17619(2014).

    [64] ROTHHARDT C, ROTHHARDT J, KLENKE A. BBO-sapphire sandwich structure for frequency conversion of high power lasers[J]. Optical Materials Express, 4, 1092-1103(2014).

    [65] CAMPER A, PARK H, LAI Y. Tunable mid-infrared source of light carrying orbital angular momentum in the femtosecond regime[J]. Optics Letters, 42, 3769-3772(2017).

    [66] QIAN Jun-yu, PENG Yu-jie, LI Yan-yan. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification[J]. Photonics Research, 8, 421-425(2020).

    [67] LIU Hai-gang, LI Hui, ZHENG Yuan-lin. Nonlinear frequency conversion and manipulation of vector beams[J]. Optics Letters, 43, 5981-5984(2018).

    Tools

    Get Citation

    Copy Citation Text

    Hua-bao CAO, Hu-shan WANG, Hao YUAN, Xin LIU, Pei HUANG, Yi-shan WANG, Wei ZHAO, Yu-xi FU. Research Progress of Mid-infrared Femtosecond Sources Based on Optical Parametric Amplification (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 59

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Mar. 11, 2021

    The Author Email: Yi-shan WANG (yshwang@opt.ac.cn)

    DOI:10.3788/gzxb20204911.1149005

    Topics