Laser & Optoelectronics Progress, Volume. 60, Issue 21, 2100004(2023)

Two-Dimensional Metasurface: Application and Research Progress of Metalenses

Jianxiong Tang, Yandong Gong*, and Kai Pang
Author Affiliations
  • School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
  • show less
    References(67)

    [1] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [2] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [3] Xu T, Wang C T, Du C L et al. Plasmonic beam deflector[J]. Optics Express, 16, 4753-4759(2008).

    [4] Sun Z J, Kim H K. Refractive transmission of light and beam shapingwith metallic nano-optic lenses[J]. Applied Physics Letters, 85, 642-644(2004).

    [5] Shi H F, Wang C T, Du C L et al. Beam manipulating by metallic nano-slits with variant widths[J]. Optics Express, 13, 6815-6820(2005).

    [6] Verslegers L, Catrysse P B, Yu Z F et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 9, 235-238(2009).

    [7] Kats M A, Yu N F, Genevet P et al. Effect of radiation damping on the spectral response of plasmonic components[J]. Optics Express, 19, 21748-21753(2011).

    [8] Jackson J D[M]. Classical electrodynamics(1998).

    [9] Aieta F, Genevet P, Kats M A et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 12, 4932-4936(2012).

    [10] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [11] Ni X J, Ishii S, Kildishev A V et al. Ultra-thin, planar, babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2, e72(2013).

    [12] Pors A, Nielsen M G, Eriksen R L et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 13, 829-834(2013).

    [13] Zhang S Y, Kim M H, Aieta F et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays[J]. Optics Express, 24, 18024-18034(2016).

    [14] Kang M, Feng T H, Wang H T et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 20, 15882-15890(2012).

    [15] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [16] Pu M B, Li X, Ma X L et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 1, e1500396(2015).

    [17] Khorasaninejad M, Capasso F. Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters[J]. Nano Letters, 15, 6709-6715(2015).

    [18] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [19] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).

    [20] Chen R, Zhou Y, Chen W J et al. Multifunctional metasurface: coplanar embedded design for metalens and nanoprinted display[J]. ACS Photonics, 7, 1171-1177(2020).

    [21] Liu H M, Chen D L, Sun X H. Research on characteristics of metasurface lens based on the trapezoid structure[J]. Laser & Optoelectronics Progress, 59, 1722003(2022).

    [22] Li J, Wu T S, Xu W B et al. Mechanisms of 2π phase control in dielectric metasurface and transmission enhancement effect[J]. Optics Express, 27, 23186-23196(2019).

    [23] Decker M, Staude I, Falkner M et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 3, 813-820(2015).

    [24] Zhang L, Ding J, Zheng H Y et al. Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature communications, 9, 1481(2018).

    [25] Yu Y F, Zhu A Y, Paniagua-Domínguez R et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths[J]. Laser & Photonics Review, 9, 412-418(2015).

    [26] Anzan-Uz-Zaman M, Song K, Lee D G et al. A novel approach to Fabry-Pérot-resonance-based lens and demonstrating deep-subwavelength imaging[J]. Scientific Reports, 10, 1-10(2020).

    [27] Pancharatnam S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 44, 398-417(1956).

    [28] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 392, 45-57(1984).

    [29] Chen C, Gao S L, Song W G et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation[J]. Nano Letters, 21, 1815-1821(2021).

    [30] Yuan Y Y, Sun S, Chen Y et al. A fully phase-modulated metasurface as an energy-controllable circular polarization router[J]. Advanced Science, 7, 2001437(2020).

    [31] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [32] Li S Q, Li X Y, Wang G X et al. Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface[J]. Advanced Optical Materials, 7, 1801365(2019).

    [33] Chen B H, Wu P C, Su V C et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 17, 6345-6352(2017).

    [34] Kim I, Ansari M A, Mehmood M Q et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators[J]. Advanced Materials, 32, 2004664(2020).

    [35] Iyer P P, DeCrescent R A, Lewi T et al. Uniform thermo-optic tunability of dielectric metalenses[J]. Physical Review Applied, 10, 044029(2018).

    [36] Afridi A, Canet-Ferrer J, Philippet L et al. Electrically driven varifocal silicon metalens[J]. ACS Photonics, 5, 4497-4503(2018).

    [37] Berto P, Philippet L, Osmond J et al. Tunable and free-form planar optics[J]. Nature Photonics, 13, 649-656(2019).

    [38] Thyagarajan K, Sokhoyan R, Zornberg L et al. Millivolt modulation of plasmonic metasurface optical response via ionic conductance[J]. Advanced Materials, 29, 1701044(2017).

    [39] Shirmanesh G K, Sokhoyan R, Wu P C et al. Electro-optically tunable multifunctional metasurfaces[J]. ACS Nano, 14, 6912-6920(2020).

    [40] Fan C Y, Chuang T J, Wu K H et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals[J]. Optics Express, 28, 10609-10617(2020).

    [41] Colburn S, Zhan A L, Majumdar A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 5, 825-831(2018).

    [42] Fu R, Li Z L, Zheng G X et al. Reconfigurable step-zoom metalens without optical and mechanical compensations[J]. Optics Express, 27, 12221-12230(2019).

    [43] Cui Y, Zheng G X, Chen M et al. Reconfigurable continuous-zoom metalens in visible band[J]. Chinese Optics Letters, 17, 111603(2019).

    [44] Wei Y X, Wang Y X, Feng X et al. Compact optical polarization-insensitive zoom metalens doublet[J]. Advanced Optical Materials, 8, 2000142(2020).

    [45] Wei S B, Cao G Y, Lin H et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region[J]. ACS Nano, 15, 4769-4776(2021).

    [46] Arbabi E, Arbabi A, Kamali S M et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 812(2018).

    [47] Lalanne P, Astilean S, Chavel P et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff[J]. Journal of the Optical Society of America A, 16, 1143-1156(1999).

    [48] Khorasaninejad M, Aieta F, Kanhaiya P et al. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 15, 5358-5362(2015).

    [49] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [50] Kalvach A, Szabó Z. Aberration-free flat lens design for a wide range of incident angles[J]. Journal of the Optical Society of America B, 33, A66-A71(2016).

    [51] Arbabi A, Arbabi E, Kamali S M et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 7, 13682(2016).

    [52] Aieta F, Genevet P, Kats M et al. Aberrations of flat lenses and aplanatic metasurfaces[J]. Optics Express, 21, 31530-31539(2013).

    [53] Kim C, Kim S J, Lee B. Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations[J]. Optics Express, 28, 18059-18076(2020).

    [54] Sawant R, Andrén D, Martins R J et al. Aberration-corrected large-scale hybrid metalenses[J]. Optica, 8, 1405-1411(2021).

    [55] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [56] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [57] Chen W T, Zhu A Y, Sisler J et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 10, 355(2019).

    [58] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).

    [59] Cheng Q Q, Ma M L, Yu D et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 64, 1525-1531(2019).

    [60] Zhang F, Pu M, Li X et al. Extreme‐Angle Silicon Infrared Optics Enabled by Streamlined Surfaces[J]. Advanced Materials, 33, 2008157(2021).

    [61] Chen W T, Zhu A Y, Sisler J et al. Broadband achromatic metasurface-refractive optics[J]. Nano Letters, 18, 7801-7808(2018).

    [62] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [63] Ni Y B, Wen S, Shen Z C et al. Multidimensional light field sensing based on metasurfaces[J]. Chinese Journal of Lasers, 48, 1918003(2021).

    [64] Mo H R, Ji Z T, Zheng Y D et al. Broadband achromatic imaging with metalens (invited)[J]. Infrared and Laser Engineering, 50, 20211005(2021).

    [65] Deng M, Ren T X, Wang J et al. Doublet achromatic metalens for broadband optical retroreflector[J]. Chinese Optics Letters, 19, 023601(2021).

    [66] Sun P, Zhang M D, Dong F L et al. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared[J]. Chinese Optics Letters, 20, 013601(2022).

    [67] Ba P F, Li Q Z, Wu J J et al. Automatic design technology and software of dielectric metalens[J]. Acta Optica Sinica, 42, 0722001(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jianxiong Tang, Yandong Gong, Kai Pang. Two-Dimensional Metasurface: Application and Research Progress of Metalenses[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2100004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 22, 2022

    Accepted: Nov. 8, 2022

    Published Online: Oct. 26, 2023

    The Author Email: Gong Yandong (eydong@bistu.edu.cn)

    DOI:10.3788/LOP222602

    Topics