Laser & Optoelectronics Progress, Volume. 55, Issue 10, 102601(2018)

Enhancement of Optical Trapping Stability Based on 4π Focusing System

Xu Huafeng*, Cui Wei, and Zhang Zhou
Author Affiliations
  • [in Chinese]
  • show less
    References(29)

    [1] [1] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

    [2] [2] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

    [3] [3] Dholakia K, Reece P, Gu M. Optical micromanipulation[J]. Chemical Society Reviews, 2008, 37(1): 42-55.

    [4] [4] Ziegler F, Lim N C, Mandal S S, et al. Knotting and unknotting of a protein in single molecule experiments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7533-7538.

    [5] [5] Li S X, Chen G, Zhang Y J, et al. Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques[J]. Optics Express, 2014, 22(21): 25895-25908.

    [6] [6] Zhong M C, Wei X B, Zhou J H, et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 2013, 4: 1768.

    [7] [7] Liang Y S, Yao B L, Ma B H, et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator[J]. Acta Optica Sinica, 2016, 36(3): 0309001.

    [8] [8] Guo Z H, Liu Z T, Chen Q M, et al. Application and progress of laser shaping devices in optical tweezers[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090004.

    [9] [9] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [10] [10] Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 2010, 105(25): 253602.

    [11] [11] Zhang Y J, Ding B F, Suyama T. Trapping two types of particles using a double-ring-shaped radially polarized beam[J]. Physical Review A, 2010, 81(2): 023831.

    [12] [12] Huang L, Guo H L, Li J F, et al. Optical trapping of gold nanoparticles by cylindrical vector beam[J]. Optics Letters, 2012, 37(10): 1694-1696.

    [13] [13] Li M M, Yan S H, Yao B L, et al. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations[J]. Optics Express, 2016, 24(18): 20604-20612.

    [14] [14] Liu X N, Wang J M, He C J, et al. Backward focus engineering with controlled cylindrical vector beams under different numerical apertures[J]. Acta Optica Sinica, 2014, 34(1): 0114004.

    [15] [15] Liu J, Yang Y F, He Y, et al. Flattop beam creation based on strong focusing of circularly polarized vortex beams[J]. Acta Optica Sinica, 2014, 34(5): 0526003.

    [16] [16] Gong H X, Jia X T, Tao J, et al. Generating of vector vortex beams based on Mach-Zender interferometer[J]. Chinese Journal of Lasers, 2018, 45(1): 0105001.

    [17] [17] Xu Q, Li J G, Wang X, et al. Scattering properties of vectorial far-field Laguerre-Gaussian beam by single spherical particle[J]. Chinese Journal of Lasers, 2018, 45(6): 0605003.

    [18] [18] Bokor N, Davidson N. Toward a spherical spot distribution with 4π focusing of radially polarized light[J]. Optics Letters, 2004, 29(17): 1968-1970.

    [19] [19] Chen W B, Zhan Q W. Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy[J]. Optics Letters, 2009, 34(16): 2444-2446.

    [20] [20] Yan S H, Yao B L, Rupp R. Shifting the spherical focus of a 4Pi focusing system[J]. Optics Express, 2011, 19(2): 673-678.

    [21] [21] Chen Z Y, Zhao D M. 4Pi focusing of spatially modulated radially polarized vortex beams[J]. Optics Letters, 2012, 37(8): 1286-1288.

    [22] [22] Chang Q, Yang Y F, He Y, et al. Study of the focusing features of spatial amplitude and phase modulated radially polarized vortex beams in a 4pi focusing system[J]. Acta Physica Sinica, 2013,62(10): 104202.

    [23] [23] Cui W J, Song F, Song F F, et al. Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam[J]. Optics Express, 2016, 24(18): 20062.

    [24] [24] Wang X Y, Rui G H, Gong L P, et al. Manipulation of resonant metallic nanoparticle using 4Pi focusing system[J]. Optics Express, 2016, 24(21): 24143-24152.

    [25] [25] Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: 1959, 253(1274): 358-379.

    [26] [26] Zhang Y J, Ding B F. Magnetic field distribution of a highly focused radially-polarized light beam[J]. Optics Express, 2009, 17(24): 22235-22239.

    [27] [27] Chen G Y, Song F, Wang H T. Sharper focal spot generated by 4π tight focusing of higher-order Laguerre-Gaussian radially polarized beam[J]. Optics Letters, 2013, 38(19): 3937-3940.

    [28] [28] Zhan Q. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

    [29] [29] Zhang Y J, Suyama T, Ding B F. Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam[J]. Optics Letters, 2010, 35(8): 1281-1283.

    Tools

    Get Citation

    Copy Citation Text

    Xu Huafeng, Cui Wei, Zhang Zhou. Enhancement of Optical Trapping Stability Based on 4π Focusing System[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Jul. 5, 2018

    Accepted: --

    Published Online: Oct. 14, 2018

    The Author Email: Huafeng Xu (xhfeng716@126.com)

    DOI:10.3788/lop55.102601

    Topics