Acta Optica Sinica, Volume. 37, Issue 4, 414004(2017)

Grain Rearrangement and Fatigue Property of IN718 Alloy Strengthened by Laser Peening

Huang Shu1、*, Sheng Jie1, Tan Wensheng2, Wang Zuowei1, Meng Xiankai1, Liu Muxi1, and Yang Xiaole1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(25)

    [1] [1] Gnanamuthu D S. Laser surface treatment[J]. Optical Engineering, 1980, 19(5): 195783

    [2] [2] Vaithilingam J, Goodridge R D, Haguer J M, et al. The effect of laser remelting on the surface chemistry of Ti6AL4V components fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 232(9): 1-8.

    [3] [3] Lu Yunlong, Zhang Peilei, Ma Kai, et al. Microstructure and properties of laser alloying Ni-W-Si composite coating[J]. Rare Metal Materials and Engineering, 2016, 45(2): 375-380.

    [4] [4] Yue L Y, Wang Z B, Li L. Modeling and simulation of laser cleaning of tapered micro-slots with different temporal pulses[J]. Optics & Laser Technology, 2013, 45(2): 533-539.

    [5] [5] Arias-González F, del Val J, Comesaa R, et al. Fiber laser cladding of nickel-based alloy on cast iron[J]. Applied Surface Science, 2015, 374: 197-205.

    [6] [6] Sheng J, Huang S, Zhou J Z, et al. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy[J]. Optics & Laser Technology, 2016, 77: 169-176.

    [7] [7] Zhou Jianzhong, Xu Zengchuang, Huang Shu, et al. Effects of different stress ratios on fatigue crack growth in laser shot peened 6061-T6 aluminum alloy[J]. Chinese J Lasers, 2011, 38(9): 0903006.

    [8] [8] Gencalp Irizalp S, Saklakoglu N. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing[J]. Optics & Lasers in Engineering, 2016, 77: 183-190.

    [9] [9] Ren X D, Huang J J, Zhou W F, et al. Surface nano-crystallization of AZ91D magnesium alloy induced by laser shock processing[J]. Materials & Design, 2015, 86: 421-426.

    [10] [10] Zhang Y, You J, Lu J, et al. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface & Coatings Technology, 2010, 204(24): 3947-3953.

    [11] [11] Zhang X C, Zhang Y K, Lu J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science & Engineering A, 2010, 527(15): 3411-3415.

    [12] [12] Correa C, Gil-Santos A, Porro J A, et al. Eigenstrain simulation of residual stresses induced by laser shock processing in a Ti6Al4V hip replacement[J]. Materials & Design, 2015, 79: 106-114.

    [13] [13] Luo K Y, Lu J Z, Zhang Y K, et al. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Materials Science & Engineering A, 2011, 528(13-14): 4783-4788.

    [14] [14] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.

    [15] [15] Zhou Z, Gill A S, Telang A, et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy[J]. Experimental Mechanics, 2014, 54(9): 1597-1611.

    [16] [16] Gill A S, Telang A, Vasudevan V K. Characteristics of surface layers formed on Inconel 718 by laser shock peening with and without a protective coating[J]. Journal of Materials Processing Technology, 2015, 225: 463-472.

    [17] [17] Zhang Haifeng, Huang Shu, Sheng Jie, et al. Thermal relaxation of residual stress and grain evolution in laser peening IN718 alloy[J]. Chinese J Lasers, 2016, 43(2): 0203008.

    [18] [18] Denda T, Kikuchi H, Teramoto T, et al. Effect of grain size on fatigue life and fatigue crack growth mechanism of IN718[J]. Transactions of the Japan Society of Mechanical Engineers, 1994, 60(576): 1746-1752.

    [19] [19] Li Meijuan, Hu Haiyun, Xing Xiusan. The relationship between fatigue life and grain size of polycrystalline metals[J]. Acta Physica Sinica, 2003, 52(8): 2092-2095.

    [20] [20] Hattori H, Kitagawa M, Ohtomo A. Effect of grain size on high temperature low-cycle fatigue properties of Inconel 617[J]. Journal of the Iron and Steel Institute of Japan, 1982, 68(16): 2521-2530.

    [21] [21] Hammersley G, Hackel L A, Harris F. Surface prestressing to improve fatigue strength of components by laser shot peening[J]. Optics & Lasers in Engineering, 2000, 34(4-6): 327-337.

    [22] [22] Zhuang W Z, Halford G R. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue, 2001, 23(s1): 31-37.

    [23] [23] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

    [24] [24] Sadananda K, Shahinian P. Review of the fracture mechanics approach to creep crack growth in structural alloys[J]. Engineering Fracture Mechanics, 1981, 15(3-4): 327-342.

    [25] [25] Dong Shizhu. Study of subgrain evolution under fatigue[J]. Machinery Design & Manufacture, 1995(6): 46-47.

    Tools

    Get Citation

    Copy Citation Text

    Huang Shu, Sheng Jie, Tan Wensheng, Wang Zuowei, Meng Xiankai, Liu Muxi, Yang Xiaole. Grain Rearrangement and Fatigue Property of IN718 Alloy Strengthened by Laser Peening[J]. Acta Optica Sinica, 2017, 37(4): 414004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Nov. 22, 2016

    Accepted: --

    Published Online: Apr. 10, 2017

    The Author Email: Shu Huang (huangshu11@sina.com)

    DOI:10.3788/aos201737.0414004

    Topics