Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2264(2024)

Effect of Ethylene Glycol Methyl Ether on Electrochemical Performance of Aqueous Zinc-Ion Battery

SUN Yongxin1, CAO Jin2、*, ZHANG Lulu1, and YANG Xuelin3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(44)

    [1] [1] ELLABBAN O, ABU-RUB H, BLAABJERG F. Renewable energy resources: Current status, future prospects and their enabling technology[J]. Renew Sustain Energy Rev, 2014, 39: 748-764.

    [2] [2] YU Z, BALSARA N P, BORODIN O, et al. Beyond local solvation structure: Nanometric aggregates in battery electrolytes and their effect on electrolyte properties[J]. ACS Energy Lett, 2022, 7(1): 461-470.

    [3] [3] YANG R J, FAN Y Y, MEI L, et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials[J]. Nat Synth, 2023, 2(2): 101-118.

    [4] [4] JIN T, LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chem Soc Rev, 2020, 49(8): 2342-2377.

    [5] [5] WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nat Mater, 2018, 17(6): 543-549.

    [6] [6] HAO J N, LONG J, LI B, et al. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive[J]. Adv Funct Materials, 2019, 29(34): 1903605.

    [7] [7] CAO L S, LI D, SOTO F A, et al. Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes[J]. Angew Chem Int Ed Engl, 2021, 60(34): 18845-18851.

    [8] [8] LIU Y, WU X. Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries[J]. Chin Chem Lett, 2022, 33(3): 1236-1244.

    [9] [9] LI Y X, ZHAO J X, HU Q, et al. Prussian blue analogs cathodes for aqueous zinc ion batteries[J]. Mater Today Energy, 2022, 29:101095.

    [10] [10] YUAN X H, MA F X, ZUO L Q, et al. Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries[J]. Electrochem Energy Rev, 2021, 4(1): 1-34.

    [11] [11] WANG T T, LI C P, XIE X S, et al. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives[J]. ACS Nano, 2020, 14(12): 16321-16347.

    [12] [12] CAO J, ZHANG D D, ZHANG X Y, et al. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries[J]. Energy Environ Sci, 2022, 15(2): 499-528.

    [13] [13] HAO J N, LI B, LI X L, et al. An In-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries[J]. Adv Mater, 2020, 32(34): e2003021.

    [14] [14] ZHANG N N, HUANG S, YUAN Z S, et al. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries[J]. Angew Chem Int Ed Engl, 2021, 60(6): 2861-2865.

    [15] [15] LOLUPIMAN K, WANGYAO P, QIN J Q. Electrodeposition of Zn/TiO2 composite coatings for anode materials of Zinc ion battery[J]. J Met Mater Miner, 2019, 29(4): 120-126.

    [16] [16] WANG L Y, HUANG W W, GUO W B, et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries[J]. Adv Funct Materials, 2022, 32(1): 2108533.

    [17] [17] LI T C, FANG D L, ZHANG J T, et al. Recent progress in aqueous zinc-ion batteries: A deep insight into zinc metal anodes[J]. J Mater Chem A, 2021, 9(10): 6013-6028.

    [18] [18] ZHAO H, LEI D N, HE Y B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Adv Energy Mater, 2018, 8(19): 1800266.

    [19] [19] XIE X S, LIANG S Q, GAO J W, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy Environ Sci, 2020, 13(2): 503-510.

    [20] [20] CAO L S, LI D, HU E Y, et al. Solvation structure design for aqueous Zn metal batteries[J]. J Am Chem Soc, 2020, 142(51): 21404-21409.

    [21] [21] KAO-IAN W, NGUYEN M T, YONEZAWA T, et al. Highly stable rechargeable zinc-ion battery using dimethyl sulfoxide electrolyte[J]. Mater Today Energy, 2021, 21: 100738.

    [22] [22] LIU Z X, LUO X B, QIN L P, et al. Progress and prospect of low-temperature zinc metal batteries[J]. Adv Powder Mater, 2022, 1(2): 100011.

    [23] [23] CAO J, ZHANG D D, CHANAJAREE R, et al. Stabilizing zinc anode via a chelation and desolvation electrolyte additive[J]. Adv Powder Mater, 2022, 1, 100007.

    [24] [24] ZHANG D D, CAO J, CHANAJAREE R, et al. Reconstructing the anode interface and solvation shell for reversible zinc anodes[J]. ACS Appl Mater Interfaces, 2023, 15(9): 11940-11948.

    [25] [25] LI N, LI G Q, LI C J, et al. Bi-cation electrolyte for a 1.7 V aqueous Zn ion battery[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13790-13796.

    [26] [26] HAO J N, YUAN L B, YE C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents[J]. Angew Chem Int Ed Engl, 2021, 60(13): 7366-7375.

    [27] [27] DU H H, WANG K, SUN T J, et al. Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte[J]. Chem Eng J, 2022, 427: 131705.

    [28] [28] YANG H J, CHANG Z, QIAO Y, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries[J]. Angew Chem Int Ed Engl, 2020, 59(24): 9377-9381.

    [29] [29] LIU J H, YE C, WU H, et al. 2D mesoporous zincophilic sieve for high-rate sulfur-based aqueous zinc batteries[J]. J Am Chem Soc, 2023, 145(9): 5384-5392.

    [30] [30] WANG X, FENG K Q, SANG B Y, et al. Highly reversible zinc metal anodes enabled by solvation structure and interface chemistry modulation[J]. Adv Energy Mater, 2023, 13(36): 2301670.

    [31] [31] ABDULLA J, CAO J, ZHANG D D, et al. Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(5): 4602-4609.

    [32] [32] SUN P, MA L, ZHOU W H, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive[J]. Angew Chem Int Ed Engl, 2021, 60(33): 18247-18255.

    [33] [33] LUO J R, XU L, ZHOU Y J, et al. Regulating the inner Helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries[J]. Angew Chem Int Ed Engl, 2023, 62(21): e202302302.

    [34] [34] BAYAGUUD A, LUO X, FU Y P, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries[J]. ACS Energy Lett, 2020, 5(9): 3012-3020.

    [35] [35] CHEN Y M, GONG F C, DENG W J, et al. Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries[J]. Energy Storage Mater, 2023, 58: 20-29.

    [36] [36] ZENG X H, MAO J F, HAO J N, et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions[J]. Adv Mater, 2021, 33(11): e2007416.

    [37] [37] ZHENG L L, LI H H, WANG X, et al. Competitive solvation-induced interphases enable highly reversible Zn anodes[J]. ACS Energy Lett, 2023, 8(5): 2086-2096.

    [38] [38] GU X X, DU Y X, CAO Z M, et al. Hexamethylenetetramine additive with zincophilic head and hydrophobic tail for realizing ultra-stable Zn anode[J]. Chem Eng J, 2023, 460: 141902.

    [39] [39] YUAN W T, MA G Q, NIE X Y, et al. In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes[J]. Chem Eng J, 2022, 431: 134076.

    [40] [40] ZHOU S, WANG Y P, LU H T, et al. Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes[J]. Adv Funct Materials, 2021, 31(46): 2104361.

    [41] [41] CAO J, SUN Y X, ZHANG D D, et al. Interfacial double-coordination effect guiding uniform electrodeposition for reversible zinc metal anode[J]. Adv Energy Mater, 2024, 14(2): 2302770.

    [42] [42] CAO J, WANG X, ZHANG D D, et al. Boosting Zn metal anode stability with a dimethylformamide additive[J]. J Alloys Compd, 2024, 972: 172773.

    [43] [43] CAO J, ZHANG D D, CHANAJAREE R, et al. Highly reversible Zn metal anode with low voltage hysteresis enabled by tannic acid chemistry[J]. ACS Appl Mater Interfaces, 2023, 15(38): 45045-45054.

    [44] [44] CAO J, ZHANG D D, YUE Y L, et al. Unveiling the X-Ray absorption chemistry of H3.78V6O13 cathode for aqueous zinc-ion batteries[J]. Adv Funct Mater, 2023,33(42):2307270.

    Tools

    Get Citation

    Copy Citation Text

    SUN Yongxin, CAO Jin, ZHANG Lulu, YANG Xuelin. Effect of Ethylene Glycol Methyl Ether on Electrochemical Performance of Aqueous Zinc-Ion Battery[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2264

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 1, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Jin CAO (caojin@ctgu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230934

    Topics