Photonics Research, Volume. 8, Issue 2, 143(2020)

Quantum nonreciprocality in quadratic optomechanics

Xunwei Xu1、*, Yanjun Zhao2, Hui Wang3, Hui Jing4,6, and Aixi Chen1,5,7
Author Affiliations
  • 1Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
  • 2Faculty of Information Technology, College of Microelectronics, Beijing University of Technology, Beijing 100124, China
  • 3Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan
  • 4Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 5Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 6e-mail: jinghui73@foxmail.com
  • 7e-mail: aixichen@zstu.edu.cn
  • show less
    Figures & Tables(4)
    (a), (b) Schematic diagram for generating QOM coupling, where a mechanical nanostring oscillator is placed between two whispering gallery mode (WGM) resonators. (c), (d) Dispersion of the optical modes as a function of the displacement.
    (a) The transmission coefficients T21 (solid black curve) and T12 (dashed red curve) as a function of the detuning Δ/G. (b) The isolation as a function of the detuning Δ/G. (c) The equal-time second-order correlation function log10[gij(2)(0)] (ij=12,21) as a function of the detuning Δ/G. (d) The second-order correlation function log10[g21(2)(τ)] as a function of the normalized time delay γcτ/(2π) at detuning Δ=2G. The other parameters are Δm=Δ/2, G=3γc, ε=γc/10, γm=γc/100, and nth=0.
    Schematic energy spectrum of the linearized QOM coupling between optical mode aL and mechanical resonator b, where |00⟩≡|0,0⟩, |10⟩≡|0,1⟩, |2±1⟩≡(|1,0⟩±|0,2⟩)/2, |3±1⟩≡(|1,1⟩±|0,3⟩)/2, |40⟩≡(−3|2,0⟩+|0,4⟩)/2, |4±1⟩≡(|2,0⟩±2|1,2⟩+3|0,4⟩)/(22), and |n,m⟩ represents the Fock state with n photons in aL and m phonons in b.
    (a) Transmission coefficient T21. (b) The equal-time second-order correlation function log10[g21(2)(0)] versus the detuning Δ/G with different mean thermal phonon number (nth=0,0.1,1). (c) The isolation T21/T12. (d) The equal-time second-order correlation function log10[g21(2)(0)] versus the mean thermal phonon number nth with different detuning (Δ=0,2G,6G). The other parameters are the same as in Fig. 2.
    Tools

    Get Citation

    Copy Citation Text

    Xunwei Xu, Yanjun Zhao, Hui Wang, Hui Jing, Aixi Chen. Quantum nonreciprocality in quadratic optomechanics[J]. Photonics Research, 2020, 8(2): 143

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Jul. 2, 2019

    Accepted: Nov. 25, 2019

    Published Online: Feb. 10, 2020

    The Author Email: Xunwei Xu (davidxu0816@163.com)

    DOI:10.1364/PRJ.8.000143

    Topics