Optics and Precision Engineering, Volume. 32, Issue 11, 1746(2024)

Worm surface defect detection with fusion of multi-scale features

Lei WANG... Wenping GUO*, Xinwei CHEN and Min XIA |Show fewer author(s)
Author Affiliations
  • School of Optical and Electronic Information, Huazhong University of Science and Technology, Hubei430070, China
  • show less
    Figures & Tables(18)
    Structure of AFP-YOLO network model
    Structure of EMA network
    Worm defect collection system
    Worm defects after image enlargement
    Distribution of label sizes in worm surface defect training dataset
    Impact of data augmentation on mAP of model
    Impact of different neck networks on recall for various categories
    Heatmaps before and after inserting attention mechanism
    Effectiveness of different algorithms on worm gear surface defect detection
    • Table 1. Worm shooting camera and lens parameters

      View table
      View in Article

      Table 1. Worm shooting camera and lens parameters

      PropertyValue
      Resolution2 448×2 048
      Pixel size/μm3.45
      Working distance/mm73±1
      Frame rate/(frame·s-136
      Field of view/mm219.3×16.2
      Magnification0.438
      Unit pixel represents physical distance/μm7.89
    • Table 2. Distribution of worm raw data defect

      View table
      View in Article

      Table 2. Distribution of worm raw data defect

      Defect typeDefect codeDefect quantity
      Ii11 609
      Sc2414
      Fc3252
      Sd4669
    • Table 3. Distribution of surface defect data in worm dataset

      View table
      View in Article

      Table 3. Distribution of surface defect data in worm dataset

      Defect typeTrainValTestTotal
      Ii1 5482422051 995
      Sc1 3721401441 656
      Fc804108961 008
      Sd1 6741711441 989
      Image quantity3 8624804634 805
    • Table 4. Experimental results adding different neck networks to model

      View table
      View in Article

      Table 4. Experimental results adding different neck networks to model

      NeckParameters/MP/%R/%mAP@0.5/%FPS
      PAN36.4980.8968.473.660.24
      SPPAFPN35.8176.1271.873.965.79
      AFPN28.7376.0374.575.575.75
    • Table 5. Experimental results of inserting EMA at different positions

      View table
      View in Article

      Table 5. Experimental results of inserting EMA at different positions

      Project codeInsertion positionParametersmAP@0.5/%
      --28.7375.5
      14,528.7575.9
      26,728.7575.6
      38,9,1028.7975.6
      42,329.6174.7
      51,228.9476.5
    • Table 6. Experimental results using different loss functions

      View table
      View in Article

      Table 6. Experimental results using different loss functions

      IndexLoss functionmAP@0.5mAP@0.75
      1CIoU76.526.5
      2DIoU74.425.5
      3GIoU73.725.2
      4EIoU73.424.8
      5MPDIoU74.226.4
      6WIoUv174.425.3
      7WIoUv275.326.7
      8WIoUv374.824.6
      9SIoU76.925.3
    • Table 7. Ablation experiments of three improvement approaches

      View table
      View in Article

      Table 7. Ablation experiments of three improvement approaches

      AFPNEMASIoUParamete/MmAP@0.5Variation
      00036.4973.6-
      10028.775.5+1.9
      01036.574.3+0.7
      00136.4973.8+0.2
      11028.9476.5+2.9
      01136.5175.1+1.5
      10128.774.5+0.9
      11128.9476.9+3.3
    • Table 8. Test results of different algorithms on worm gear surface defect dataset

      View table
      View in Article

      Table 8. Test results of different algorithms on worm gear surface defect dataset

      AlgorithmImage SizeParameter/MmAP@0.5mAP@0.75
      YOLOv3640×64061.5169.918.1
      YOLOR-p6640×64036.8245.99.5
      YOLOv5m640×64020.873.3-
      YOLOv7640×64036.4973.623.1
      YOLOv8m640×64025.8472.235.5
      AFP-YOLO640×64028.9476.925.3
    • Table 9. Actual detection performance of AFP-YOLO among 30 worms

      View table
      View in Article

      Table 9. Actual detection performance of AFP-YOLO among 30 worms

      Defect

      Defect

      quantity

      Detect

      quantity

      False detectMiss detect
      Ii31631215
      Sc13713128
      Fc13513313
      Sd22922922
      Total817805618
    Tools

    Get Citation

    Copy Citation Text

    Lei WANG, Wenping GUO, Xinwei CHEN, Min XIA. Worm surface defect detection with fusion of multi-scale features[J]. Optics and Precision Engineering, 2024, 32(11): 1746

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 8, 2024

    Accepted: --

    Published Online: Aug. 8, 2024

    The Author Email: GUO Wenping (wpguo@hust.edu.cn)

    DOI:10.37188/OPE.20243211.1746

    Topics