Journal of Innovative Optical Health Sciences, Volume. 6, Issue 1, 1230002(2013)
ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION
[1] [1] J. A. Aarli, T. D. Uca, A. Janca, A. Muscetta, "Neurological disorders: Public health challenges," World HealthOrganization ISBN 9241563362 (2006).
[2] [2] D. V. Buonomano, M. M. Merzenich, "Cortical plasticity: From synapses to maps," Ann. Rev. Neurosci. 21, 149-186 (1998).
[3] [3] B. A. Wilt et al., "Advances in light microscopy for neuroscience," Ann. Rev. Neurosci. 32, 435-506 (2009).
[4] [4] O. Sporns, G. Tononi, R. Kotter, "The human connectome: A structural description of the human brain," PLoS Comput. Biol. 1, e42 (2005).
[5] [5] J. W. Lichtman, W. Denk, "The big and the small: Challenges of imaging the brain's circuits," Science 334, 618-623 (2011).
[6] [6] M. Helmstaedter, K. L. Briggman, W. Denk, "High-accuracy neurite reconstruction for highthroughput neuroanatomy," Nat. Neurosci. 14, 1081-1088 (2011).
[7] [7] K. L. Briggman, M. Helmstaedter, W. Denk, "Wiring specificity in the direction-selectivity circuit of the retina," Nature 471, 183-188 (2011).
[8] [8] J. G. White, E. Southgate, J. N. Thomson, S. Brenner, "The structure of the nervous system of the nematode Caenorhabditis elegans," Philos. Trans. Roy. Soc. London B Biol. Sci. 314, 1-340 (1986).
[9] [9] S. Mori, J. Zhang, "Principles of diffusion tensor imaging and its applications to basic neuroscience research," Neuron 51, 527-539 (2006).
[10] [10] K. Yamada, K. Sakai, K. Akazawa, S. Yuen, T. Nishimura, "MR tractography: A review of its clinical applications," Magn. Reson. Med. Sci. 8, 165-174 (2009).
[11] [11] P. V. Prasad, Magnetic Resonance Imaging: Methods and Biologic Applications, Humana Press (2006).
[12] [12] A. L. Alexander, J. E. Lee, M. Lazar, A. S. Field, "Diffusion tensor imaging of the brain," Neurotherapeutics 4, 316-329 (2007).
[13] [13] J. W. Bohland et al., "A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale," PLoS Comput. Biol. 5, e1000334 (2009).
[14] [14] N. Kasthuri, J. W. Lichtman, "The rise of the "projectome," Nat. Methods 4, 307-308 (2007).
[15] [15] J. B. Pawley, Handbook of Biological Confocal Microscopy, Springer (2006).
[16] [16] R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996).
[17] [17] W. R. Zipfel, R. M. Williams, W. W. Webb, "Nonlinear magic: Multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369- 1377 (2003).
[18] [18] H. Hama et al., "Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain," Nat. Neurosci. 14, 1481- 1488 (2011).
[19] [19] T. L. Tay, O. Ronneberger, S. Ryu, R. Nitschke, W. Driever, "Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems," Nat. Commun. 2, 171 (2011).
[20] [20] D. Mayerich, L. Abbott, B. McCormick, "Knifeedge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain," J. Microsc. 231, 134-143 (2008).
[21] [21] A. Mascaro, M. Farina, R. Gigli, C. E. Vitelli, L. Fortunato, "Recent advances in the surgical care of breast cancer patients," World J. Surg. Oncol. 8, 5 (2010).
[22] [22] J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science 305, 1007-1009 (2004).
[23] [23] H. Siedentopf, R. Zsigmondy, "Uber sichtbarmachung und gr€o enbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingl ser," Ann. Phys. 315, 1-39 (1902).
[24] [24] A. H. Voie, D. H. Burns, F. A. Spelman, "Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens," J. Microsc. 170, 229-236 (1993).
[25] [25] H. U. Dodt et al., "Ultramicroscopy: Threedimensional visualization of neuronal networks in the whole mouse brain," Nat. Methods 4, 331-336 (2007).
[26] [26] J. Huisken, D. Y. Stainier, "Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM)," Opt. Lett. 32, 2608-2610 (2007).
[27] [27] P. J. Verveer et al., "High-resolution threedimensional imaging of large specimens with light sheet-based microscopy," Nat. Methods 4, 311-313 (2007).
[28] [28] P. J. Keller, A. D. Schmidt, J. Wittbrodt, E. H. Stelzer, "Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy," Science 322, 1065-1069 (2008).
[29] [29] C. Dunsby, "Optically sectioned imaging by oblique plane microscopy," Opt. Express 16, 20,306-20,316 (2008).
[30] [30] T. F. Holekamp, D. Turaga, T. E. Holy, "Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy," Neuron 57, 661-672 (2008).
[31] [31] M. Tokunaga, N. Imamoto, K. Sakata-Sogawa, "Highly inclined thin illumination enables clear single-molecule imaging in cells," Nat. Methods 5, 159-161 (2008).
[32] [32] J. Huisken, D. Y. Stainier, "Selective plane illumination microscopy techniques in developmental biology," Development 136, 1963-1975 (2009).
[33] [33] K. Becker, N. Jahrling, S. Saghafi, R. Weiler, H. U. Dodt, "Chemical clearing and dehydration of GFP expressing mouse brains," PLoS One 7, e33916 (2012).
[34] [34] V. V. Tuchin, "Optical clearing of tissues and blood using the immersion method," J. Phys. D Appl. Phys. 38, 2497-2518 (2005).
[35] [35] T. Breuninger, K. Greger, E. H. Stelzer, "Lateral modulation boosts image quality in single plane illumination fluorescence microscopy," Opt. Lett. 32, 1938-1940 (2007).
[36] [36] S. Kalchmair, N. Jahrling, K. Becker, H. U. Dodt, "Image contrast enhancement in confocal ultramicroscopy," Opt. Lett. 35, 79-81 (2010).
[37] [37] J. Mertz, J. Kim, "Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection," J. Biomed. Opt. 15, 016027 (2010).
[38] [38] P. J. Keller et al., "Fast, high-contrast imaging of animal development with scanned light sheetbased structured-illumination microscopy," Nat. Methods 7, 637-642 (2010).
[39] [39] J. Mertz, "Optical sectioning microscopy with planar or structured illumination," Nat. Methods 8, 811-819 (2011).
[40] [40] F. O. Fahrbach, A. Rohrbach, "Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media," Nat. Commun. 3, 632 (2012).
[41] [41] L. Silvestri, A. Bria, L. Sacconi, G. Iannello, F. S. Pavone, "Confocal light sheet microscopy: Micronscale neuroanatomy of the entire mouse brain," Opt. Express 20, 20,582-20,598 (2012).
[42] [42] A. Antonini, M. P. Stryker, "Rapid remodeling of axonal arbors in the visual cortex," Science 260, 1819-1821 (1993).
[43] [43] A. K. Majewska, J. R. Newton, M. Sur, "Remodeling of synaptic structure in sensory cortical areas in vivo," J. Neurosci. 26, 3021-3029 (2006).
[44] [44] C. Portera-Cailliau, R. M. Weimer, V. De Paola, P. Caroni, K. Svoboda, "Diverse modes of axon elaboration in the developing neocortex," PLoS Biol. 3, e272 (2005).
[45] [45] E. S. Ruthazer, C. J. Akerman, H. T. Cline, "Control of axon branch dynamics by correlated activity in vivo," Science 301, 66-70 (2003).
[46] [46] Y. Zuo, G. Yang, E. Kwon, W. B. Gan, "Longterm sensory deprivation prevents dendritic spine loss in primary somatosensory cortex," Nature 436, 261-265 (2005).
[47] [47] J. T. Trachtenberg et al., "Long-termin vivo imaging of experience-dependent synaptic plasticity in adult cortex," Nature 420, 788-794 (2002).
[48] [48] V. De Paola et al., "Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex," Neuron 49, 861-875 (2006).
[49] [49] D. D. Stettler, H. Yamahachi, W. Li, W. Denk, C. D. Gilbert, "Axons and synaptic boutons are highly dynamic in adult visual cortex," Neuron 49, 877-887 (2006).
[50] [50] L. V. Wang, "Multiscale photoacoustic microscopy and computed tomography," Nat. Photonics 3, 503-509 (2009).
[51] [51] X. Q. Yang, X. Cai, K. Maslov, L. H. Wang, Q. M. Luo, "High-resolution photoacoustic microscope for rat brain imaging in vivo," Chin. Opt. Lett. 8, 609-611 (2010).
[52] [52] F. Helmchen, W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005).
[53] [53] K. Svoboda, R. Yasuda, "Principles of two-photon excitation microscopy and its applications to neuroscience," Neuron 50, 823-839 (2006).
[54] [54] A. Holtmaat et al., "Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window," Nat. Protoc. 4, 1128-1144 (2009).
[55] [55] L. Aigner et al., "Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice," Cell 83, 269-278 (1995).
[56] [56] C. Beaulieu, M. Colonnier, "Effect of the richness of the environment on the cat visual cortex," J. Comp. Neurol. 266, 478-494 (1987).
[57] [57] W. T. Greenough, H. M. Hwang, C. Gorman, "Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments," Proc. Natl. Acad. Sci. USA 82, 4549-4552 (1985).
[58] [58] B. Kolb, J. Cioe, W. Comeau, "Contrasting effects of motor and visual spatial learning tasks on dendritic arborization and spine density in rats," Neurobiol. Learn. Mem. 90, 295-300 (2008).
[59] [59] M. B. Moser, "Making more synapses: A way to store information ," Cell. Molec. Life Sci. 55, 593-600 (1999).
[60] [60] M. B. Moser, M. Trommald, P. Andersen, "An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses," Proc. Natl. Acad. Sci. USA 91, 12,673-12,675 (1994).
[61] [61] G. W. Knott, C. Quairiaux, C. Genoud, E. Welker, "Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice," Neuron 34, 265-273 (2002).
[62] [62] C. E. Brown, P. Li, J. D. Boyd, K. R. Delaney, T. H. Murphy, "Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke," J. Neurosci. 27, 4101- 4109 (2007).
[63] [63] N. Dancause et al., "Extensive cortical rewiring after brain injury," J. Neurosci. 25, 10,167-10,179 (2005).
[64] [64] T. Schallert, J. L. Leasure, B. Kolb, "Experienceassociated structural events, subependymal cellular proliferative activity, and functional recovery after injury to the central nervous system," J. Cereb. Blood Flow Metab. 20, 1513-1528 (2000).
[65] [65] P. Strata, A. Buffo, F. Rossi, "Regenerative events in the olivocerebellar pathway," Restor. Neurol. Neurosci. 19, 95-106 (2001).
[66] [66] A. Buffo, M. Fronte, A. B. Oestreicher, F. Rossi, "Degenerative phenomena and reactive modifi- cations of the adult rat inferior olivary neurons following axotomy and disconnection from their targets," Neuroscience 85, 587-604 (1998).
[67] [67] K. Konig, I. Riemann, P. Fischer, K. J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Molec. Biol. (Noisy-le-grand) 45, 195-201 (1999).
[68] [68] S. Kumar et al., "Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics," Biophys. J. 90, 3762-3773 (2006).
[69] [69] L. Sacconi, I. M. Tolic-Norrelykke, R. Antolini, F. S. Pavone, "Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope," J. Biomed. Opt. 10, 14002 (2005).
[70] [70] N. Shen et al., "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).
[71] [71] I. M. Tolic-Norrelykke, L. Sacconi, G. Thon, F. S. Pavone, "Positioning and elongation of the fission yeast spindle by microtubule-based pushing," Curr. Biol. 14, 1181-1186 (2004).
[72] [72] V. Kohli, A. Y. Elezzabi, "Laser surgery of zebra- fish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser's effect on short- and longterm development," BMC Biotechnol. 8, 7 (2008).
[73] [73] L. Sacconi et al., "In vivo multiphoton nanosurgery on cortical neurons," J. Biomed. Opt. 12, 050502 (2007).
[74] [74] A. L. Allegra Mascaro, L. Sacconi, F. S. Pavone, "Multi-photon nanosurgery in live brain," Front Neuroenergetics 2, 21 (2010).
[75] [75] P. S. Tsai et al., "Plasma-mediated ablation: An optical tool for submicrometer surgery on neuronal and vascular systems," Curr. Opin. Biotechnol. 20, 90-99 (2009).
[76] [76] N. Nishimura et al., "Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: Three models of stroke," Nat. Methods 3, 99-108 (2006).
[77] [77] R. Yasuda et al., "Imaging calcium concentration dynamics in small neuronal compartments," Sci. STKE 2004, p. 15 (2004).
[78] [78] E. A. Nimchinsky, R. Yasuda, T. G. Oertner, K. Svoboda, "The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines," J. Neurosci. 24, 2054-2064 (2004).
[79] [79] B. L. Sabatini, K. Svoboda, "Analysis of calcium channels in single spines using optical fluctuation analysis," Nature 408, 589-593 (2000).
[80] [80] R. Yasuda, B. L. Sabatini, K. Svoboda, "Plasticity of calcium channels in dendritic spines," Nat. Neurosci. 6, 948-955 (2003).
[81] [81] V. Egger, K. Svoboda, Z. F. Mainen, "Dendrodendritic synaptic signals in olfactory bulb granule cells: Local spine boost and global low-threshold spike," J. Neurosci. 25, 3521-3530 (2005).
[82] [82] J. H. Goldberg, C. O. Lacefield, R. Yuste, "Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: Implications for control of pyramidal cell bursting," J. Physiol. 558, 465-478 (2004).
[83] [83] T. Nevian, B. Sakmann, "Single spine Ca2t signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex," J. Neurosci. 24, 1689-1699 (2004).
[84] [84] B. Rozsa, T. Zelles, E. S. Vizi, B. Lendvai, "Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons," J. Neurosci. 24, 661-670 (2004).
[85] [85] C. L. Cox, W. Denk, D. W. Tank, K. Svoboda, "Action potentials reliably invade axonal arbors of rat neocortical neurons," Proc. Natl. Acad. Sci. USA 97, 9724-9728 (2000).
[86] [86] H. J. Koester, B. Sakmann, "Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex," J. Physiol. 529 Pt 3, 625-646 (2000).
[87] [87] D. A. Rusakov, A. Wuerz, D. M. Kullmann, "Heterogeneity and specificity of presynaptic Ca2t current modulation by mGluRs at individual hippocampal synapses," Cereb. Cortex 14, 748-758 (2004).
[88] [88] R. Cossart, Y. Ikegaya, R. Yuste, "Calcium imaging of cortical networks dynamics," Cell Calcium 37, 451-457 (2005).
[89] [89] F. Helmchen, K. Imoto, B. Sakmann, "Ca2t buffering and action potential-evoked Ca2t signaling in dendrites of pyramidal neurons," Biophys. J. 70, 1069-1081 (1996).
[90] [90] M. Maravall, Z. F. Mainen, B. L. Sabatini, K. Svoboda, "Estimating intracellular calcium concentrations and buffering without wavelength ratioing," Biophys. J. 78, 2655-2667 (2000).
[91] [91] K. Svoboda, W. Denk, D. Kleinfeld, D. W. Tank, "In vivo dendritic calcium dynamics in neocortical pyramidal neurons," Nature 385, 161-165 (1997).
[92] [92] E. Neher, B. Sakmann, "Single-channel currents recorded from membrane of denervated frog muscle fibres," Nature 260, 799-802 (1976).
[93] [93] J. Mapelli, E. D'Angelo, "The spatial organization of long-term synaptic plasticity at the input stage of cerebellum," J. Neurosci. 27, 1285-1296 (2007).
[94] [94] U. Egert, D. Heck, A. Aertsen, "Two-dimensional monitoring of spiking networks in acute brain slices," Exp. Brain. Res. 142, 268-274 (2002).
[95] [95] L. B. Cohen, B. M. Salzberg, "Optical measurement of membrane potential," Rev. Physiol. Biochem. Pharmacol. 83, 35-88 (1978).
[96] [96] D. S. Peterka, H. Takahashi, R. Yuste, "Imaging voltage in neurons," Neuron 69, 9-21 (2011).
[97] [97] L. Moreaux, O. Sandre, S. Charpak, M. Blanchard- Desce, J. Mertz, "Coherent scattering in multiharmonic light microscopy," Biophys. J. 80, 1568-1574 (2001).
[98] [98] P. J. Campagnola, L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[99] [99] L. Sacconi et al., "Cell imaging and manipulation by nonlinear optical microscopy," Cell Biochem. Biophys. 45, 289-302 (2006).
[100] [100] F. Vanzi, L. Sacconi, R. Cicchi, F. S. Pavone, "Protein conformation and molecular order probed by second-harmonic-generation microscopy," J. Biomed. Opt. 17, 060901 (2012).
[101] [101] T. Pons, L. Moreaux, O. Mongin, M. Blanchard- Desce, J. Mertz, "Mechanisms of membrane potential sensing with second-harmonic generation microscopy," J. Biomed. Opt. 8, 428-431 (2003).
[102] [102] D. A. Dombeck,M. Blanchard-Desce, W. W. Webb, "Optical recording of action potentials with secondharmonic generation microscopy," J. Neurosci. 24, 999-1003 (2004).
[103] [103] L. Sacconi, D. A. Dombeck, W. W. Webb, "Overcoming photodamage in second-harmonic generation microscopy: Real-time optical recording of neuronal action potentials," Proc. Natl. Acad. Sci. USA 103, 3124-3129 (2006).
[104] [104] D. A. Dombeck, L. Sacconi, M. Blanchard-Desce, W. W. Webb, "Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy," J. Neurophysiol. 94, 3628-3636 (2005).
[105] [105] M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, R. Yuste, "Imaging membrane potential in dendritic spines," Proc. Natl. Acad. Sci. USA 103, 786-790 (2006).
[106] [106] A. Bullen, S. S. Patel, P. Saggau, "High-speed, random-access fluorescence microscopy: I. Highresolution optical recording with voltage-sensitive dyes and ion indicators," Biophys. J. 73, 477-491 (1997).
[107] [107] L. Sacconi et al., "Optical recording of electrical activity in intact neuronal networks with random access second-harmonic generation microscopy," Opt. Express 16, 14910-14921 (2008).
[108] [108] J. A. Fisher et al., "Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ," J. Neurophysiol. 99, 1545-1553 (2008).
[109] [109] L. Sacconi et al., "Action potential propagation in transverse-axial tubular system is impaired in heart failure," Proc. Natl. Acad. Sci. USA 109, 5815-5819 (2012).
[110] [110] S. Shoham, D. H. O'Connor, R. Segev, "How silent is the brain: Is there a `dark matter' problem in neuroscience ," J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192, 777-784 (2006).
[111] [111] V. Nikolenko, K. E. Poskanzer, R. Yuste, "Twophoton photostimulation and imaging of neural circuits," Nat. Methods 4, 943-950 (2007).
[112] [112] A. Holtmaat and K. Svoboda, "Experiencedependent structural synaptic plasticity in the mammalian brain," Nat. Rev. Neurosci. 10, 647-658 (2009).
Get Citation
Copy Citation Text
L. SILVESTRI, A. L. ALLEGRA MASCARO, J. LOTTI, L. SACCONI, F. S. PAVONE. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION[J]. Journal of Innovative Optical Health Sciences, 2013, 6(1): 1230002
Received: Oct. 17, 2012
Accepted: --
Published Online: Jan. 10, 2019
The Author Email: SILVESTRI L. (silvestri@lens.unifi.it)