Optics and Precision Engineering, Volume. 31, Issue 10, 1532(2023)
Dense pedestrian detection algorithm in multi-branch non-anchor frame network
[1] [1] 1侯佳伟. 从七次全国人口普查看我国人口发展新特点及新趋势[J]. 学术论坛, 2021, 44(5): 1-14. doi: 10.3969/j.issn.1004-4434.2021.05.001HOUJ W. Looking at the new characteristics and trends of China’s population development from the seven national censuses[J]. Academic Forum, 2021, 44(5): 1-14. (in Chinese). doi: 10.3969/j.issn.1004-4434.2021.05.001
[2] C X LUO, X D YANG, A YUILLE. Exploring Simple 3D Multi-Object Tracking for Autonomous Driving, 10468-10477(10).
[3] C LIU, X TANG, J J MA et al. Remote Sensing Images Feature Learning Based on Multi-Branch Networks, 2057-2060(2021).
[4] W KE, T L ZHANG, Z Y HUANG et al. Multiple Anchor Learning for Visual Object Detection, 10203-10212(13).
[5] S LI, L X YANG, J Q HUANG et al. Dynamic Anchor Feature Selection for Single-Shot Object Detection, 6608-6617(2019).
[6] R GIRSHICK, J DONAHUE, T DARRELL et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, 580-587(23).
[7] J REDMON, S DIVVALA, R GIRSHICK et al. You Only Look Once: Unified, Real-Time Object Detection, 779-788(27).
[8] K ROSZYK, M R NOWICKI, P SKRZYPCZYŃSKI. Adopting the YOLOv4 architecture for low-latency multispectral pedestrian detection in autonomous driving. Sensors, 22, 1082(2022).
[9] U GAWANDE, K HAJARI, Y GOLHAR. SIRA: Scale illumination rotation affine invariant mask R-CNN for pedestrian detection. Applied Intelligence, 52, 10398-10416(2022).
[10] [10] 10李经宇, 杨静, 孔斌, 等. 基于注意力机制的多尺度车辆行人检测算法[J]. 光学 精密工程, 2021, 29(6): 1448-1458. doi: 10.37188/OPE.20212906.1448LIJ Y, YANGJ, KONGB, et al. Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism[J]. Opt. Precision Eng., 2021, 29(6): 1448-1458. (in Chinese). doi: 10.37188/OPE.20212906.1448
[11] [11] 11马立, 巩笑天, 欧阳航空. Tiny YOLOV3目标检测改进[J]. 光学 精密工程, 2020, 28(4): 988-995. doi: 10.3788/OPE.20202804.0988MAL, GONGX T, OUYANGH K. Improvement of Tiny YOLOV3 target detection[J]. Opt. Precision Eng., 2020, 28(4): 988-995. (in Chinese). doi: 10.3788/OPE.20202804.0988
[12] Z C JIN, B LIU, Q CHU et al. SAFNet: A Semi-Anchor-Free Network with Enhanced Feature Pyramid for Object Detection, 9445-9457(2020).
[13] C C ZHU, Y H HE, M SAVVIDES. Feature Selective Anchor-Free Module for Single-Shot Object Detection, 840-849(15).
[14] S F ZHANG, C CHI, Y Q YAO et al. Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection, 9756-9765(13).
[15] H LAW, J DENG. CornerNet: detecting objects as paired keypoints. International Journal of Computer Vision, 128, 642-656(2020).
[16] X ZHOU, D WANG, P KRÄHENBÜHL. Objects as points. arXiv preprint(2019).
[17] K W DUAN, S BAI, L X XIE et al. Centernet: keypoint triplets for object detection, 6568-6577(2019).
[18] Z W CAO, H H YANG, W J XU et al. Multiscale anchor-free region proposal network for pedestrian detection. Wireless Communications and Mobile Computing, 2021, 1-12(2021).
[19] Z F DING, Z C GU, Y P SUN et al. Cascaded cross-layer fusion network for pedestrian detection. Mathematics, 10, 139(2022).
[20] [20] 20邹逸群, 肖志红, 唐夏菲, 等. Anchor-free的尺度自适应行人检测算法[J]. 控制与决策, 2021, 36(2): 295-302. doi: 10.13195/j.kzyjc.2020.0124ZOUY Q, XIAOZH H, TANGX F, et al. Anchor-free scale adaptive pedestrian detection algorithm[J]. Control and Decision, 2021, 36(2): 295-302. (in Chinese). doi: 10.13195/j.kzyjc.2020.0124
[21] K M HE, X Y ZHANG, S Q REN et al. Deep Residual Learning for Image Recognition, 770-778(27).
[22] S W CHU, Y SONG, J J ZOUO et al. Human Pose Estimation Using Deep Convolutional Densenet Hourglass Network with Intermediate Points Voting, 594-598(22).
[23] X WENG, Y YAN, G S DONG et al. Deep multi-branch aggregation network for real-time semantic segmentation in street scenes, 17224-17240(2022).
[24] Z F CHEN, X QIN, C YANG et al. Composite localization for human pose estimation. arXiv preprint(2021).
[25] C J DU, H YU, L YU. A scale-sensitive heatmap representation for multi-person pose estimation. IET Image Processing, 16, 1194-1207(2022).
[26] H WU, Y CAO, H P WEI et al. Face recognition based on haar like and euclidean distance. Journal of Physics: Conference Series, 1813(2021).
[27] SBIN CHOI, S S LEE, J PARK et al. Standard greedy non maximum suppression optimization for efficient and high speed inference, 1-4(1).
[28] S F ZHANG, Y L XIE, J WAN et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild. IEEE Transactions on Multimedia, 22, 380-393(2020).
[29] S SHAO, Z ZHAO, B LI et al. Crowdhuman: A benchmark for detecting human in a crowd. arXiv preprint(2018).
[30] Z TIAN, C H SHEN, H CHEN et al. FCOS: A Simple and Strong Anchor-Free Object Detector, 1922-1933(2020).
[31] [31] 31王宸, 张秀峰, 刘超, 等. 改进YOLOv3的轮毂焊缝缺陷检测[J]. 光学 精密工程, 2021, 29(8): 1942-1954. doi: 10.37188/OPE.20212908.1942WANGCH, ZHANGX F, LIUCH, et al. Detection method of wheel hub weld defects based on the improved YOLOv3[J]. Opt. Precision Eng., 2021, 29(8): 1942-1954. (in Chinese). doi: 10.37188/OPE.20212908.1942
[32] H J KANG. Real-time Object Detection on 640x480 Image with VGG16 SSD, 419-422(9).
[33] Y M WANG, K B JIA, P Y LIU. Impolite pedestrian detection by using enhanced YOLOv3-tiny. Journal on Artificial Intelligence, 2, 113-124(2020).
[34] [34] 34陈一潇, 阿里甫·库尔班, 林文龙, 等. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. doi: 10.3778/j.issn.1002-8331.2201-0058CHENY X, ALIFUK, LINW L, et al. CA-YOLOv5 for crowded pedestrian detection[J]. Computer Engineering and Applications, 2022, 58(9): 238-245. (in Chinese). doi: 10.3778/j.issn.1002-8331.2201-0058
[35] J REDMON, A FARHADI. YOLO9000: Better, Faster, Stronger, 6517-6525(21).
[36] J CAO, Y PANG, R M ANWER et al. PSTR: End-To-End One-Step Person Search with Transformers, 9458-9467(2022).
[37] R YU, D DU, R LALONDE et al. Cascade Transformers for End-to-End Person Search, 2022, 7267-7276.
Get Citation
Copy Citation Text
Zhixuan LÜ, Xia WEI, Deqi HUANG. Dense pedestrian detection algorithm in multi-branch non-anchor frame network[J]. Optics and Precision Engineering, 2023, 31(10): 1532
Category: Information Sciences
Received: May. 30, 2022
Accepted: --
Published Online: Jul. 4, 2023
The Author Email: WEI Xia (30462111@qq.com)