Optics and Precision Engineering, Volume. 28, Issue 6, 1323(2020)

Review of snapshot spectral imaging technologies

GAO Ze-dong1...2, GAO Hong-xing3, ZHU Yuan-yuan2, LI Jie2, HAO Qun1,*, LIU Yu1,2, CHEN Chao2, CHENG Gang2, CAO Jie1 and MENG He-min2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(76)

    [1] [1] HAGEN N A, KUDENOV M W. Review of snapshot spectral imaging technologies[C]. Optical Engineering, 2013, 52(9): 090901.

              HAGEN N A, KUDENOV M W. Review of snapshot spectral imaging technologies[C]. Optical Engineering, 2013, 52(9): 090901.

    [2] [2] GAO L, WANG L V. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel[J]. Physics Reports, 2016, 616: 1-37.

              GAO L, WANG L V. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel[J]. Physics Reports, 2016, 616: 1-37.

    [8] [8] BOWEN I S. The image-slicer a device for reducing loss of light at slit of stellar spectrograph[J]. The Astrophysical Journal Letters, 1938, 88: 113.

              BOWEN I S. The image-slicer a device for reducing loss of light at slit of stellar spectrograph[J]. The Astrophysical Journal Letters, 1938, 88: 113.

    [11] [11] GAO L, KESTER R T, HAGEN N, et al.. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy[J]. Optics Express, 2010, 18 (14): 14330-14344.

              GAO L, KESTER R T, HAGEN N, et al.. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy[J]. Optics Express, 2010, 18 (14): 14330-14344.

    [12] [12] GEELEN B, TACK N, LAMBRECHTS A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic[C]. Proc SPIE 8974, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VII, San Francisco, California, USA, 2014, 8974: 89740L.

              GEELEN B, TACK N, LAMBRECHTS A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic[C]. Proc SPIE 8974, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VII, San Francisco, California, USA, 2014, 8974: 89740L.

    [13] [13] HORSTMEYER R, EULISS G, ATHALE R, et al.. Flexible multimodal camera using a light field architecture[C]. 2009 IEEE International Conference on Computational Photography (ICCP), 16-17 April 2009, San Francisco, CA, USA. IEEE, 2009: 1-8.

              HORSTMEYER R, EULISS G, ATHALE R, et al.. Flexible multimodal camera using a light field architecture[C]. 2009 IEEE International Conference on Computational Photography (ICCP), 16-17 April 2009, San Francisco, CA, USA. IEEE, 2009: 1-8.

    [14] [14] HORSTMEYER R, ATHALE R A, EULISS G W. Modified light field architecture for reconfigurable multimode imaging[J]. Proceedings of SPIE, 2009, 7468: 746804.

              HORSTMEYER R, ATHALE R A, EULISS G W. Modified light field architecture for reconfigurable multimode imaging[J]. Proceedings of SPIE, 2009, 7468: 746804.

    [15] [15] GEHM M E, JOHN R, BRADY D J, et al.. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027.

              GEHM M E, JOHN R, BRADY D J, et al.. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027.

    [16] [16] SHOGENJI R, KITAMURA Y, YAMADA K, et al.. Multispectral imaging using compact compound optics[J]. Optics Express, 2004, 12(8): 1643-1655.

              SHOGENJI R, KITAMURA Y, YAMADA K, et al.. Multispectral imaging using compact compound optics[J]. Optics Express, 2004, 12(8): 1643-1655.

    [17] [17] GEELEN B, JAYAPALA M, TACK N, et al.. Low-complexity image processing for a high-throughput low-latency snapshot multispectral imager with integrated tiled filters[ C]. SPIE Defense, Security, and Sensing. Proc SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, Baltimore, Maryland, USA, 2013, 8743: 87431E.

              GEELEN B, JAYAPALA M, TACK N, et al.. Low-complexity image processing for a high-throughput low-latency snapshot multispectral imager with integrated tiled filters[ C]. SPIE Defense, Security, and Sensing. Proc SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, Baltimore, Maryland, USA, 2013, 8743: 87431E.

    [18] [18] HUBOLD M, BERLICH R, GASSNER C, et al.. Ultra-compact micro-optical system for multispectral imaging[C]. Proc SPIE 10545, MOEMS and Miniaturized Systems XVII, San Francisco, California, USA, 2018, 1054: 105450V.

              HUBOLD M, BERLICH R, GASSNER C, et al.. Ultra-compact micro-optical system for multispectral imaging[C]. Proc SPIE 10545, MOEMS and Miniaturized Systems XVII, San Francisco, California, USA, 2018, 1054: 105450V.

    [19] [19] MU T K, HAN F, BAO D H, et al.. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter[J] . Optics Letters, 2019, 44(5): 1281-1284.

              MU T K, HAN F, BAO D H, et al.. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter[J] . Optics Letters, 2019, 44(5): 1281-1284.

    [20] [20] KUDENOV M W, DERENIAK E L. Compact real-time birefringent imaging spectrometer[J]. Optics Express, 2012, 20(16): 17973-17986.

              KUDENOV M W, DERENIAK E L. Compact real-time birefringent imaging spectrometer[J]. Optics Express, 2012, 20(16): 17973-17986.

    [21] [21] HAGEN N, DERENIAK E L. Analysis of computed tomographic imaging spectrometers I Spatial and spectral resolution[J]. Applied Optics, 2008, 47(28): F85.

              HAGEN N, DERENIAK E L. Analysis of computed tomographic imaging spectrometers I Spatial and spectral resolution[J]. Applied Optics, 2008, 47(28): F85.

    [22] [22] STOFFELS J, BLUEKENS A A J, PETRUS JACOBUS M P. Color splitting prism assembly: US4084180[P\]. 1978-04-11.

              STOFFELS J, BLUEKENS A A J, PETRUS JACOBUS M P. Color splitting prism assembly: US4084180[P\]. 1978-04-11.

    [23] [23] MURAKAMI Y, YAMAGUCHI M, OHYAMA N. Hybrid-resolution multispectral imaging using color filter array[J]. Optics Express, 2012, 20(7): 7173-7183.

              MURAKAMI Y, YAMAGUCHI M, OHYAMA N. Hybrid-resolution multispectral imaging using color filter array[J]. Optics Express, 2012, 20(7): 7173-7183.

    [24] [24] HEADLAND S E, JONES H R, D′SA A S V, et al.. Cutting-edge analysis of extracellular microparticles using ImageStreamX imaging flow cytometry[J]. Scientific Reports, 2015, 4: 5237.

              HEADLAND S E, JONES H R, D′SA A S V, et al.. Cutting-edge analysis of extracellular microparticles using ImageStreamX imaging flow cytometry[J]. Scientific Reports, 2015, 4: 5237.

    [25] [25] GORMAN A, FLETCHERHOLMES D W, HARVEY A R. Generalization of the Lyot filter and its application to snapshot spectral imaging[J]. Optics Express, 2010, 18(6): 5602 -5608.

              GORMAN A, FLETCHERHOLMES D W, HARVEY A R. Generalization of the Lyot filter and its application to snapshot spectral imaging[J]. Optics Express, 2010, 18(6): 5602 -5608.

    [26] [26] KUDENOV M W, JUNGWIRTH M E L, DERENIAK E L, et al.. White-light Sagnac interferometer for snapshot multispectral imaging[J]. Applied Optics, 2010, 49(21): 4067- 4076.

              KUDENOV M W, JUNGWIRTH M E L, DERENIAK E L, et al.. White-light Sagnac interferometer for snapshot multispectral imaging[J]. Applied Optics, 2010, 49(21): 4067- 4076.

    [27] [27] CONTENT R, BLAKE S, DUNLOP C, et al.. New microslice technology for hyperspectral imaging[J]. Remote Sensing, 2013, 5(3): 1204-1219.

              CONTENT R, BLAKE S, DUNLOP C, et al.. New microslice technology for hyperspectral imaging[J]. Remote Sensing, 2013, 5(3): 1204-1219.

    [28] [28] GAT N, SCRIVEN G, GARMAN J, et al.. Development of four-dimensional imaging spectrometers (4D-IS)[C]. SPIE Optics + Photonics. Proc SPIE 6302, Imaging Spectrometry XI, San Diego, California, USA, 2006, 6302: 63020M.

              GAT N, SCRIVEN G, GARMAN J, et al.. Development of four-dimensional imaging spectrometers (4D-IS)[C]. SPIE Optics + Photonics. Proc SPIE 6302, Imaging Spectrometry XI, San Diego, California, USA, 2006, 6302: 63020M.

    [29] [29] KRIESEL J, SCRIVEN G, GAT N, et al.. Snapshot hyperspectral fovea vision system (HyperVideo)[C]. SPIE Defense, Security, and Sensing. Proc SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, Baltimore, Maryland, USA, 2012, 8390: 83900T.

              KRIESEL J, SCRIVEN G, GAT N, et al.. Snapshot hyperspectral fovea vision system (HyperVideo)[C]. SPIE Defense, Security, and Sensing. Proc SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, Baltimore, Maryland, USA, 2012, 8390: 83900T.

    [30] [30] DWIGHT J G, TKACZYK T S. Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy[J]. Biomedical Optics Express, 2017, 8(3): 1950-1964.

              DWIGHT J G, TKACZYK T S. Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy[J]. Biomedical Optics Express, 2017, 8(3): 1950-1964.

    [31] [31] BODKIN, SHEINIS A, NORTON A, et al.. Snapshot hyperspectral imaging-the hyperpixel array camera [J]. Proceedings of SPIE, 2009: 7334.

              BODKIN, SHEINIS A, NORTON A, et al.. Snapshot hyperspectral imaging-the hyperpixel array camera [J]. Proceedings of SPIE, 2009: 7334.

    [32] [32] CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2423-2435.

              CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2423-2435.

    [33] [33] CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2423-2435.

              CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2423-2435.

    [34] [34] WAGADARIKAR A, JOHN R, WILLETT R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44.

              WAGADARIKAR A, JOHN R, WILLETT R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44.

    [35] [35] WAGADARIKAR A A, PITSIANIS N P, SUN X B, et al.. Video rate spectral imaging using a coded aperture snapshot spectral imager[J]. Optics Express, 2009, 17(8): 6368 -6388.

              WAGADARIKAR A A, PITSIANIS N P, SUN X B, et al.. Video rate spectral imaging using a coded aperture snapshot spectral imager[J]. Optics Express, 2009, 17(8): 6368 -6388.

    [36] [36] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.

              FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.

    [37] [37] BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.

              BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.

    [38] [38] WAGADARIKARA A A, PITSIANISABC N P, SUN X B, et al.. Spectral image estimation for coded aperture snapshot spectral imagers[J]. Proceedings of SPIE - the International Society for Optical Engineering, 2008: 7076(36): 6824-6833.

              WAGADARIKARA A A, PITSIANISABC N P, SUN X B, et al.. Spectral image estimation for coded aperture snapshot spectral imagers[J]. Proceedings of SPIE - the International Society for Optical Engineering, 2008: 7076(36): 6824-6833.

    [39] [39] ARGUELLO H, RUEDA H, WU Y H, et al.. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 2013, 52(10): D12.

              ARGUELLO H, RUEDA H, WU Y H, et al.. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 2013, 52(10): D12.

    [40] [40] ARGUELLO H, ARCE G R. Rank minimization code aperture design for spectrally selective compressive imaging[J]. IEEE Transactions on Image Processing, 2013, 22(3): 941-954.

              ARGUELLO H, ARCE G R. Rank minimization code aperture design for spectrally selective compressive imaging[J]. IEEE Transactions on Image Processing, 2013, 22(3): 941-954.

    [41] [41] WANG L Z, XIONG Z W, GAO D H, et al.. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2015, 54(4): 848-858.

              WANG L Z, XIONG Z W, GAO D H, et al.. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2015, 54(4): 848-858.

    [43] [43] TANIDA J, KUMAGAI T, YAMADA K, et al.. Thin observation module by bound optics (TOMBO): an optoelectronic image capturing system[C]. Proc SPIE 4089, Optics in Computing 2000, 2000, 4089: 1030-1036.

              TANIDA J, KUMAGAI T, YAMADA K, et al.. Thin observation module by bound optics (TOMBO): an optoelectronic image capturing system[C]. Proc SPIE 4089, Optics in Computing 2000, 2000, 4089: 1030-1036.

    [44] [44] TANIDA J, SHOGENJI R, KITAMURA Y, et al.. Color imaging with an integrated compound imaging system[J]. Optics Express, 2003, 11(18): 2109.

              TANIDA J, SHOGENJI R, KITAMURA Y, et al.. Color imaging with an integrated compound imaging system[J]. Optics Express, 2003, 11(18): 2109.

    [45] [45] HAGEN N , DERENIAK E L. New grating designs for a CTIS imaging spectrometer[C]. Proc. of SPIE, 2007, 6565: 65650N.

              HAGEN N , DERENIAK E L. New grating designs for a CTIS imaging spectrometer[C]. Proc. of SPIE, 2007, 6565: 65650N.

    [46] [46] ORTYN W E, BASIJI D A. Imaging and analyzing parameters of small moving objects such as cells: US6608682[P]. 2003-08-19.

              ORTYN W E, BASIJI D A. Imaging and analyzing parameters of small moving objects such as cells: US6608682[P]. 2003-08-19.

    CLP Journals

    [1] LUO Zhao, LIANG Haifeng, CAI Changlong, ZHANG Yingli, JIAO Xinguang. Design and optimization of compact multispectral imaging system[J]. Optical Technique, 2023, 49(2): 143

    Tools

    Get Citation

    Copy Citation Text

    GAO Ze-dong, GAO Hong-xing, ZHU Yuan-yuan, LI Jie, HAO Qun, LIU Yu, CHEN Chao, CHENG Gang, CAO Jie, MENG He-min. Review of snapshot spectral imaging technologies[J]. Optics and Precision Engineering, 2020, 28(6): 1323

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 31, 2019

    Accepted: --

    Published Online: Jun. 4, 2020

    The Author Email: Qun HAO (qhao@bit.edu.cn)

    DOI:10.3788/ope.20202806.1323

    Topics