Optoelectronics Letters, Volume. 20, Issue 1, 1(2024)

Double Fano resonances in disk-nonconcentric ring plasmonic nanostructures

Xingfang ZHANG1...2,*, Fengshou LIU1, Lanju LIANG1,2 and Xin YAN1 |Show fewer author(s)
Author Affiliations
  • 1School of Opt-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China
  • 2Laboratory of Optoelectronic Information Processing and Display of Shandong, Zaozhuang 277160, China
  • show less
    References(33)

    [1] [1] LIMONOV M, RYBIN M V, PODDUBNY A N, et al. Fano resonances in photonics[J]. Nature photonics, 2017, 11(9): 543-554.

    [2] [2] PILOZZI L, MISSORI M, CONTI C. Observation of terahertz transition from Fano resonances to bound states in the continuum[J]. Optics letters, 2023, 48(9): 2381-2384.

    [3] [3] LEE S C, BRUECK S. Analysis of Fano lineshape in extraordinary optical transmission[J]. Optics letters, 2022, 47(8): 2020-2023.

    [4] [4] LIMONOV M F. Fano resonance for applications[J]. Advances in optics and photonics, 2021, 13(3):703-771.

    [5] [5] FENG G, CHEN Z, WANG Y, et al. Enhanced Fano resonance for high-sensitivity sensing based on bound states in the continuum[J]. Chinese optics letters, 2023, 21(3): 031202.

    [6] [6] DU M, SHEN Z. Enhanced and tunable double Fano resonances in plasmonic metasurfaces with nanoring dimers[J]. Journal of physics D: applied physics, 2021, 54(14): 145106.

    [7] [7] WU L, WANG Y, LIAO L, et al. Enhanced sec-ond-harmonic generation by Fano resonance of polari-tons[J]. Applied physics express, 2021, 14(8): 082002.

    [8] [8] WANG J H, WANG S P, MELENTIEV P N, et al. SPASER as nanoprobe for biological applications: cur-rent state and opportunities[J]. Laser & photonics re-views, 2022, 16(7): 2100622.

    [9] [9] CHEN Z, ZHANG S, CHEN Y, et al. Double Fano res-onances in hybrid disk/rod artificial plasmonic mole-cules based on dipole-quadrupole coupling[J]. Nano-scale, 2020, 12(17): 9776-9785.

    [10] [10] WANG Y, YU S, GAO Z, et al. Excitations of multiple Fano resonances based on permittivity-asymmetric di-electric meta-surfaces for nano-sensors[J]. IEEE photonics journal, 2022, 14(1): 1-7.

    [11] [11] RICCARDI M, MARTIN O J F. Role of electric cur-rents in the Fano resonances of connected plasmonic structures[J]. Optics express, 2021, 29(8): 11635-11644.

    [12] [12] WANG Y, YU S, GAO Z, et al. Excitations of multiple Fano resonances based on permittivity-asymmetric di-electric meta-surfaces for nano-sensors[J]. IEEE photonics journal, 2022, 14(1): 1-7.

    [13] [13] RICCARDI M, MARTIN O J F. Role of electric cur-rents in the Fano resonances of connected plasmonic structures[J]. Optics express, 2021, 29(8): 11635-11644.

    [14] [14] GHAHREMANI M, HABIL M K, ZA-PATA-RODRIGUEZ C J. Anapole-assisted giant elec-tric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy[J]. Scientific reports,2021, 11(1): 10639.

    [15] [15] ZHAO H, FAN X, WEI X, et al. Highly sensitive mul-tiple Fano resonances excitation on all-dielectric metas-tructure[J]. Optical review, 2023, 30(2): 208-216.

    [16] [16] HU H J, ZHANG F W, LI G Z, et al. Fano resonances with a high figure of merit in silver oligomer sys-tems[J]. Photonics research, 2018, 6(3): 204-213.

    [17] [17] QI J, MIAO R, LI C, et al. Tunable multiple plasmon resonances and local field enhancement of a structure comprising a nanoring and a built-in nanocross[J]. Op-tics communications, 2018, 421: 19-24.

    [18] [18] ZHANG X, LIU F, YAN X, et al. Multipolar Fano reso-nances in concentric semi-disk ring cavities[J]. Optik, 2020, 200: 163416.

    [19] [19] ZHANG Y, HUO Y, CAI N, et al. Manipulation of mul-tiple magnetic Fano resonances in nonconcentric asymmetric ring-ring nanostructure[J]. Materials re-search express, 2018, 5(2): 025012.

    [20] [20] WANG Z, REN L. High-order surface plasmonic reso-nance and near field enhancement in asymmetric na-noring/ellipsoid dimers[J]. Journal of applied spectros-copy, 2018, 85(3): 506-510.

    [21] [21] QIU R, LIN H, HUANG J, et al. Tunable multipolar Fano resonances and electric field enhancements in Au ring-disk plasmonic nanostructures[J]. Materials, 2018, 11(9): 1576.

    [22] [22] ZHANG Y, MING X, LIU G, et al. Narrow dark reso-nance modes in concentric ring/disk cavities[J]. Journal of the optical society of America B, 2015, 32(9): 1979-1985.

    [23] [23] LIU S, YUE P, ZHU M, et al. Restoring the silenced surface second-harmonic generation in split-ring reso-nators by magnetic and electric mode matching[J]. Op-tics express, 2019, 27(19): 26377-26391.

    [24] [24] HE J, FAN C, WANG J, et al. A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance[J]. Journal of optics, 2013, 15(2): 025007.

    [25] [25] CUI J, JI B, SONG X, et al. Efficient modulation of multipolar Fano resonances in asymmetric ring-disk/split-ring-disk nanostructure[J]. Plasmonics, 2019, 14(1): 41-52.

    [26] [26] ZHANG X, YAN X, LIU F, et al. Symmetric and anti-symmetric multipole mode-based Fano resonances in split theta-shaped nanocavities[J]. Plasmonics, 2021, 16(4): 1041-1048.

    [27] [27] TAFLOVE A, HAGNESS S. Computational electrody-namics: the finite-difference time-domain method[M]. Boston: Artech House, 2000: 19-45.

    [28] [28] JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical review B, 1972, 6(12): 4370-4379.

    [29] [29] ZHANG X, LIU F, YAN X, et al. Symmetric and anti-symmetric multipole electric-magnetic Fano resonances in elliptic disk-nonconcentric split ring plasmonic nanostructures[J]. Journal of optics, 2020, 22(11): 115003.

    [30] [30] ZHANG L, DONG Z, WANG Y M, et al. Dynamically configurable hybridization of plasmon modes in nanor-ing dimer arrays[J]. Nanoscale, 2015, 7(28): 12018-12022.

    [31] [31] HAO F, SONNEFRAUD Y, VAN DORPE P, et al. Symmetry breaking in plasmonic nanocavities: subra-diant LSPR sensing and a tunable Fano resonance[J]. Nano letters, 2008, 8(11): 3983-3988.

    [32] [32] ZHANG Y, JIA T, ZHANG H, et al. Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode[J]. Optics letters, 2012, 37(23): 4919-4921.

    [33] [33] DANA B D, KOYA A N, SONG X, et al. Effect of symmetry breaking on plasmonic coupling in nanoring dimers[J]. Plasmonics, 2020, 15(6): 1977-1988.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Xingfang, LIU Fengshou, LIANG Lanju, YAN Xin. Double Fano resonances in disk-nonconcentric ring plasmonic nanostructures[J]. Optoelectronics Letters, 2024, 20(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 9, 2023

    Accepted: Jul. 14, 2023

    Published Online: May. 15, 2024

    The Author Email: Xingfang ZHANG (zxf4114@126.com)

    DOI:10.1007/s11801-024-3064-y

    Topics