Journal of Applied Optics, Volume. 45, Issue 4, 741(2024)

Weakly supervised image semantic segmentation based on masked consistency mechanism

Jie HU and Haitao ZHAO*
Author Affiliations
  • School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • show less
    Figures & Tables(13)
    Comparison of CAMs generated by input images with different completeness
    Network structure diagram of MCM
    Pseudo labels generated by MCM on PASCAL VOC 2012
    CAMs and pseudo segmentation labels generated by different methods
    Visualization of CAMs
    Visualization of CAMs on MS COCO training dataset
    Line chart of mIoU for different mask ratios
    • Table 1. Flow chart of weakly supervised semantic segmentation algorithm

      View table
      View in Article

      Table 1. Flow chart of weakly supervised semantic segmentation algorithm

      算法弱监督语义分割
      步骤1训练MCM:
        输入:完整图像、对应被遮掩图像、被遮掩图像块的索引
        输出:类别、完整图像的类激活映射图、被遮掩图像的类激活映射图
        标签:类别
        损失:分类损失、类激活映射图的正则化损失
      使用MCM模型输出训练集数据的类激活映射图。
      步骤2训练AffinityNet:
        输入:训练图像
        输出:特征图
        标签:相邻像素对的二进制语义标签
        损失:目标对和背景对的交叉熵损失
      使用AffinityNet修正训练集的类激活映射图,AffinityNet生成转移概率矩阵,使用随机游走策略 感知语义边界并生成伪掩码标签。
      步骤3训练Deeplab v1:
        输入:训练图像
        输出:预测掩码
        标签:伪掩码
        损失:平均交并比损失
      Deeplab v1预测验证集的语义分割掩码,与分割标签计算mIoU用于评估。
    • Table 2. Evaluation of initial seed (Seed) and pseudo segmentation label (Mask) in terms of ground truth on PASCAL VOC 2012 training set

      View table
      View in Article

      Table 2. Evaluation of initial seed (Seed) and pseudo segmentation label (Mask) in terms of ground truth on PASCAL VOC 2012 training set

      方法Seed/%Mask/%
      SEAM[9]55.463.6
      AdvCAM[21]55.668.0
      TS-CAM[13]40.3-
      MCTformer[14]61.769.1
      RIB[22]56.568.6
      MCM62.070.8
    • Table 3. Comparison with state-of-the-art WSSS method on PASCAL VOC 2012 validation set

      View table
      View in Article

      Table 3. Comparison with state-of-the-art WSSS method on PASCAL VOC 2012 validation set

      方法骨干网络监督信号mIoU/%
      CIAN[3]ResNet101I+S64.3
      ICD[23]ResNet101I+S67.8
      EDAM[24]ResNet101I+S70.9
      EPS[2]ResNet101I+S71.0
      L2G[6]ResNet101I+S72.1
      AuxSegNet[25]ResNet38I+S69.0
      SEAM[9]ResNet38I64.5
      BES[26]ResNet101I65.7
      CONTA[27]ResNet38I66.1
      AdvCAM[21]ResNet101I68.1
      ECS-Net[28]ResNet38I66.6
      CDA[29]ResNet38I66.1
      MCTformer[14]ResNet38I71.9
      PMM[30]ResNet38I68.5
      URN[31]ResNet38I69.4
      URN[31]ResNet101I69.5
      AMN[32]ResNet101I70.7
      MCMResNet38I73.1
    • Table 4. Comparison with state-of-the-art WSSS method on MS COCO 2014 validation set

      View table
      View in Article

      Table 4. Comparison with state-of-the-art WSSS method on MS COCO 2014 validation set

      方法骨干网络监督信号mIoU/%
      EPS[2]ResNet101I+S35.7
      AuxSegNet[25]ResNet38I+S33.9
      L2G[6]ResNet101I+S44.2
      SEAM[9]ResNet38I31.9
      CONTA[27]ResNet38I32.8
      CDA[29]ResNet38I33.2
      PMM[30]ResNet38I36.7
      URN[31]ResNet38I40.5
      MCTformer[14]ResNet38I42.0
      AMN[32]ResNet101I44.7
      URN[31]ResNet101I40.7
      RIB[22]ResNet101I43.8
      MCMResNet38I43.7
    • Table 5. Ablation study for each loss function

      View table
      View in Article

      Table 5. Ablation study for each loss function

      方法PASCAL VOC 2012 验证集 (mIoU/%)MS COCO 2014 验证集 (mIoU/%)
      基准(MCTformer+lclsc)71.942.0
      MCM(lclsc+lclsinc)72.1 (+0.2)42.3 (+0.3)
      MCM(lclsc+lclsinc+lMC)72.1 (+0.2)42.4 (+0.4)
      MCM(lclsc+lclsinc+10lMC)73.1 (+1.2)43.7 (+1.7)
      MCM(lclsc+lclsinc+50lMC)72.7 (+0.8)43.5 (+1.5)
    • Table 6. Ablation study for masking methods

      View table
      View in Article

      Table 6. Ablation study for masking methods

      方法PASCAL VOC 2012验证集(mIoU/%)
      MCTformer71.9
      MCM73.1 (+1.2)
      MCM72.0 (+0.1)
    Tools

    Get Citation

    Copy Citation Text

    Jie HU, Haitao ZHAO. Weakly supervised image semantic segmentation based on masked consistency mechanism[J]. Journal of Applied Optics, 2024, 45(4): 741

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 15, 2023

    Accepted: --

    Published Online: Oct. 21, 2024

    The Author Email: ZHAO Haitao (赵海涛)

    DOI:10.5768/JAO202445.0402003

    Topics