Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2507(2023)

Reseach Development on Dissolution Kinetics of Fly Ash and Metakaolin

HUANG Zongxian* and WANG Qiang
Author Affiliations
  • [in Chinese]
  • show less
    References(87)

    [1] [1] GARTNER E, SUI T B. Alternative cement clinkers[J]. Cem Concr Res, 2018, 114: 27-39.

    [2] [2] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cem Concr Res, 2011, 41(12): 1232-1243.

    [3] [3] PROVIS J L. Alkali-activated materials[J]. Cem Concr Res, 2018, 114: 40-48.

    [4] [4] PROVIS J L, PALOMO A, SHI C J. Advances in understanding alkali-activated materials[J]. Cem Concr Res, 2015, 78: 110-125.

    [5] [5] PROVIS J L. Geopolymers and other alkali activated materials: why, how, and what?[J]. Mater Struct, 2014, 47(1/2): 11-25.

    [6] [6] JUENGER M C G, SNELLINGS R, BERNAL S A. Supplementary cementitious materials: new sources, characterization, and performance insights[J]. Cem Concr Res, 2019, 122: 257-273.

    [7] [7] JUENGER M C G, SIDDIQUE R. Recent advances in understanding the role of supplementary cementitious materials in concrete[J]. Cem Concr Res, 2015, 78: 71-80.

    [8] [8] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cem Concr Res, 2011, 41(12): 1244-1256.

    [9] [9] PROVIS J L, VAN DEVENTER J S J. Geopolymerisation kinetics. 2. Reaction kinetic modelling[J]. Chem Eng Sci, 2007, 62(9): 2318-2329.

    [10] [10] FERNNDEZ-JIMNEZ A, PUERTAS F. Alkali-activated slag cements: kinetic studies[J]. Cem Concr Res, 1997, 27(3): 359-368.

    [11] [11] ZHOU H H, WU X Q, XU Z Z, et al. Kinetic study on hydration of alkali-activated slag[J]. Cem Concr Res, 1993, 23(6): 1253-1258.

    [12] [12] BEN HAHA M, LE SAOUT G, WINNEFELD F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J]. Cem Concr Res, 2011, 41(3): 301-310.

    [13] [13] FERNNDEZ-JIMNEZ A, PUERTAS F. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements[J]. Adv Cem Res, 2003, 15(3): 129-136.

    [14] [14] REES C A, PROVIS J L, LUKEY G C, et al. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation[J]. Langmuir, 2007, 23(17): 9076-9082.

    [15] [15] REES C A, PROVIS J L, LUKEY G C, et al. The mechanism of geopolymer gel formation investigated through seeded nucleation[J]. Colloids Surf A Physicochem Eng Aspects, 2008, 318(1-3): 97-105.

    [16] [16] PULIGILLA S, MONDAL P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer[J]. Cem Concr Res, 2013, 43: 70-80.

    [17] [17] RUIZ-SANTAQUITERIA C, SKIBSTED J, FERNNDEZ-JIMNEZ A, et al. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates[J]. Cem Concr Res, 2012, 42(9): 1242-1251.

    [18] [18] DE SILVA P, SAGOE-CRENSTIL K, SIRIVIVATNANON V. Kinetics of geopolymerization: role of Al2O3 and SiO2[J]. Cem Concr Res, 2007, 37(4): 512-518.

    [19] [19] SAGOE-CRENTSIL K, WENG L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part II. High Si/Al ratio systems[J]. J Mater Sci, 2007, 42(9): 3007-3014.

    [20] [20] WENG L Q, SAGOE-CRENTSIL K, BROWN T, et al. Effects of aluminates on the formation of geopolymers[J]. Mater Sci Eng B, 2005, 117(2): 163-168.

    [22] [22] DUXSON P, LUKEY G C, SEPAROVIC F, et al. Effect of alkali cations on aluminum incorporation in geopolymeric gels[J]. Ind Eng Chem Res, 2005, 44(4): 832-839.

    [23] [23] REES C A, PROVIS J L, LUKEY G C, et al. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging[J]. Langmuir, 2007, 23(15): 8170-8179.

    [24] [24] PRAHARAJ T, POWELL M A, HART B R, et al. Leachability of elements from sub-bituminous coal fly ash from India[J]. Environ Int, 2002, 27(8): 609-615.

    [25] [25] PHAIR J W, VAN DEVENTER J S J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers[J]. Miner Eng, 2001, 14(3): 289-304.

    [26] [26] BROUWERS H J H, VAN EIJK R J. Fly ash reactivity: extension and application of a shrinking core model and thermodynamic approach[J]. J Mater Sci, 2002, 37(10): 2129-2141.

    [27] [27] JANKOWSKI J, WARD C R, FRENCH D, et al. Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems[J]. Fuel, 2006, 85(2): 243-256.

    [28] [28] MIKUNI A, KOMATSU R, IKEDA K. Dissolution properties of some fly ash fillers applying to geopolymeric materials in alkali solution[J]. J Mater Sci, 2007, 42(9): 2953-2957.

    [29] [29] BEN HAHA M, DE WEERDT K, LOTHENBACH B. Quantification of the degree of reaction of fly ash[J]. Cem Concr Res, 2010, 40(11): 1620-1629.

    [30] [30] CHEN C, GONG W L, LUTZE W, et al. Kinetics of fly ash leaching in strongly alkaline solutions[J]. J Mater Sci, 2011, 46(3): 590-597.

    [31] [31] HAJIMOHAMMADI A, VAN DEVENTER J S J. Dissolution behaviour of source materials for synthesis of geopolymer binders: a kinetic approach[J]. Int J Miner Process, 2016, 153: 80-86.

    [32] [32] CRUNDWELL F K. The mechanism of dissolution of minerals in acidic and alkaline solutions: part I-a new theory of non-oxidation dissolution[J]. Hydrometallurgy, 2014, 149: 252-264.

    [33] [33] CRUNDWELL F K. The mechanism of dissolution of minerals in acidic and alkaline solutions: part II Application of a new theory to silicates, aluminosilicates and quartz[J]. Hydrometallurgy, 2014, 149: 265-275.

    [34] [34] CRUNDWELL F K. The mechanism of dissolution of minerals in acidic and alkaline solutions: part III. Application to oxide, hydroxide and sulfide minerals[J]. Hydrometallurgy, 2014, 149: 71-81.

    [35] [35] CRUNDWELL F K. The mechanism of dissolution of minerals in acidic and alkaline solutions: part IV equilibrium and near-equilibrium behaviour[J]. Hydrometallurgy, 2015, 153: 46-57.

    [36] [36] CRUNDWELL F K. The mechanism of dissolution of minerals in acidic and alkaline solutions: part V surface charge and zeta potential[J]. Hydrometallurgy, 2016, 161: 174-184.

    [37] [37] CRUNDWELL F K. The mechanism of dissolution of minerals in acidic and alkaline solutions: part VI a molecular viewpoint[J]. Hydrometallurgy, 2016, 161: 34-44.

    [38] [38] BANDSTRA JZ, BRANTLEY SL. Data fitting techniques with applications to mineral dissolution kinetics In: Brantley Susan Kubicki James White Art Eds Kinetics of Water-Rock Interaction[M]. New York: Springer, 2008.

    [39] [39] PALANDRI J L, KHARAKA Y K. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling[R]. USGS Open File Report, 2004, (1068):71.

    [40] [40] DENT GLASSER LS. Sodium silicates[J]. Chem Br, 1982, (18): 33-39.

    [41] [41] GLASSER L S D, HARVEY G. The unexpected behaviour of potassium aluminosilicate solutions[J]. J Chem Soc, Chem Commun, 1984(10): 664.

    [42] [42] GLASSER L S D, HARVEY G. The gelation behaviour of aluminosilicate solutions containing Na+, K+, Cs+, and Me4N+[J]. J Chem Soc, Chem Commun, 1984(19): 1250.

    [43] [43] MCCORMICK A V, BELL A T, RADKE C J. Evidence from alkali-metal NMR spectroscopy for ion pairing in alkaline silicate solutions[J]. J Phys Chem, 1989, 93(5): 1733-1737.

    [44] [44] MCCORMICK A V, BELL A T, RADKE C J. Influence of alkali-metal cations on silicon exchange and silicon-29 spin relaxation in alkaline silicate solutions[J]. J Phys Chem, 1989, 93(5): 1737-1741.

    [45] [45] MCCORMICK A V, BELL A T, RADKE C J. Multinuclear NMR investigation of the formation of aluminosilicate anions[J]. J Phys Chem, 1989, 93(5): 1741-1744.

    [46] [46] HENDRICKS W M, BELL A T, RADKE C J. Effects of organic and alkali metal cations on the distribution of silicate anions in aqueous solutions[J]. J Phys Chem, 1991, 95(23): 9513-9518.

    [47] [47] GASTEIGER H A, FREDERICK W J, STREISEL R C. Solubility of aluminosilicates in alkaline solutions and a thermodynamic equilibrium model[J]. Ind Eng Chem Res, 1992, 31(4): 1183-1190.

    [48] [48] DEVIDAL J L. Solubility of kaolinite in alkaline solutions at hydrothermal conditions[J]. Mineral Mag, 1994, 58A(1): 223-224.

    [49] [49] SWADDLE T W, SALERNO J, TREGLOAN P A. Aqueous aluminates, silicates, and aluminosilicates[J]. Chem Soc Rev, 1994, 23(5): 319-325.

    [54] [54] NERNST W. Theorie der reaktionsgeschwindigkeit in heterogenen systemen[J]. Z Für Phys Chem, 1904, 47U(1): 52-55.

    [56] [56] GOHAR P, COURNIL M. Experimental study of dissolution kinetics of divided non-uniform grained solids[J]. Mater Chem Phys, 1986, 14(5): 427-442.

    [57] [57] LIU J C, TAN E L, CHIEN Y W. Dissolution kinetics and rate-controlling mechanisms[J]. Drug Dev Ind Pharm, 1986, 12(8-9): 1357-1370.

    [58] [58] SUNADA H, SHINOHARA I, OTSUKA A, et al. Changes of surface area in the dissolution process of crystalline substances. IV. Dissolution and simulation curves estimated from changes of surface area and cube root law[J]. Chem Pharm Bull, 1989, 37(7): 1889-1894.

    [59] [59] ELENKOV D, VLAEV S V, NIKOV I, et al. The granulometry of a polydisperse solid phase during dissolution[J]. Chem Eng J, 1989, 41(2): 75-79.

    [60] [60] DAVIES C W, NANCOLLAS G H. The precipitation of silver chloride from aqueous solutions. Part 4.-the influence of foreign ions[J]. Trans Faraday Soc, 1955, 51(0): 823-829.

    [61] [61] JONES A L. Tracer study of the kinetics of dissolution of silver chloride[J]. Trans Faraday Soc, 1963, 59(0): 2355-2361.

    [62] [62] CAMPBELL J R, NANCOLLAS G H. Crystallization and dissolution of strontium sulfate in aqueous solution[J]. J Phys Chem, 1969, 73(6): 1735-1740.

    [63] [63] BOVINGTON C H, JONES A L. Tracer study of the kinetics of dissolution of Barium sulphate[J]. Trans Faraday Soc, 1970, 66: 764.

    [64] [64] LITTLE D M S, NANCOLLAS G H. Kinetics of crystallization and dissolution of lead sulphate in aqueous solution[J]. Trans Faraday Soc, 1970, 66(0): 3103-3112.

    [65] [65] JONES A L, MADIGAN G A, WILSON I R. The dissolution and growth of Barium Iodate crystals[J]. J Cryst Growth, 1973, 20(2): 93-98.

    [66] [66] MYDLARZ J, JONES A G. Growth and dissolution kinetics of potassium sulphate crystals in aqueous 2-propanol solutions[J]. Chem Eng Sci, 1989, 44(6): 1391-1402.

    [67] [67] NANCOLLAS G H, PURDIE N. The kinetics of crystal growth[J]. Q Rev Chem Soc, 1964, 18(1): 1-20.

    [68] [68] CAPELLOS C, BIELSKI B H J. Kinetic systems: mathematical description of chemical kinetics in solution[M]. New York: Wiley-Interscience, 1972.

    [69] [69] ENGELL HJ. Dissolution of oxides in dilute acids A contribution to the electrochemistry of ionic solids[J]. Z Phys Chem NF, 1956, (7): 158.

    [70] [70] VERMILYEA DA. The dissolution of ionic compounds in aqueous media[J]. J Electrochem Soc, 1966, (113): 1067-1070.

    [71] [71] DIGGLE JW. Dissolution of oxide phases In: Oxides and Oxide Films 2[M]. New York: Marcell Dekker, 1973: 281-387.

    [72] [72] AHMAD Z. Corrosion kinetics//Principles of Corrosion Engineering and Corrosion Control[M]. Amsterdam: Elsevier, 2006: 57-119.

    [73] [73] LEVENSPIEL O. Chemical reaction engineering[M]. 3rd ed. New York: Wiley, 1999.

    [74] [74] ISLAS H, FLORES M U, REYES I A, et al. Determination of the dissolution rate of hazardous jarosites in different conditions using the shrinking core kinetic model[J]. J Hazard Mater, 2020, 386: 121664.

    [75] [75] REYES I A, PATIO F, FLORES M U, et al. Dissolution rates of jarosite-type compounds in H2SO4 medium: a kinetic analysis and its importance on the recovery of metal values from hydrometallurgical wastes[J]. Hydrometallurgy, 2017, 167: 16-29.

    [76] [76] CAO R L, JIA Z J, ZHANG Z H, et al. Leaching kinetics and reactivity evaluation of ferronickel slag in alkaline conditions[J]. Cem Concr Res, 2020, 137: 106202.

    [77] [77] CHEN C, GONG W L, LUTZE W, et al. Kinetics of fly ash geopolymerization[J]. J Mater Sci, 2011, 46(9): 3073-3083.

    [78] [78] LI C, LI Y, SUN H H, et al. The composition of fly ash glass phase and its dissolution properties applying to geopolymeric materials[J]. J Am Ceram Soc, 2011, 94(6): 1773-1778.

    [79] [79] JIANG Z Q, YANG J, MA H W, et al. Reaction behaviour of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process[J]. Trans Nonferrous Met Soc China, 2015, 25(6): 2065-2072.

    [80] [80] BERRY E E, HEMMINGS R T, CORNELIUS B J. Speciation in size and density fractionated fly ash III. the influence of HCL leaching on the glassy constituents of a high-Ca fly ash[J]. MRS Online Proc Libr, 1987, 113(1): 55-63.

    [81] [81] OEY T, KUMAR A, PIGNATELLI I, et al. Topological controls on the dissolution kinetics of glassy aluminosilicates[J]. J Am Ceram Soc, 2017, 100(12): 5521-5527.

    [82] [82] PIGNATELLI I, KUMAR A, BAUCHY M, et al. Topological control on silicates’ dissolution kinetics[J]. Langmuir, 2016, 32(18): 4434-4439.

    [83] [83] KUMAR S, KUMAR R, ALEX T C, et al. Influence of reactivity of fly ash on geopolymerisation[J]. Adv Appl Ceram, 2007, 106(3): 120-127.

    [84] [84] RAJAK D K, GURIA C, GHOSH R, et al. Alkali assisted dissolution of fly ash: a shrinking core model under finite solution volume condition[J]. Int J Miner Process, 2016, 155: 106-117.

    [85] [85] GRANIZO N, PALOMO A, FERNANDEZ-JIMNEZ A. Effect of temperature and alkaline concentration on metakaolin leaching kinetics[J]. Ceram Int, 2014, 40(7): 8975-8985.

    [86] [86] HULBERT S F, HUFF D E. Kinetics of alumina removal from a calcined Kaolin with nitric, sulphuric and hydrochloric acids[J]. Clay Miner, 1970, 8(3): 337-345.

    [87] [87] GAJAM S Y, RAGHAVAN S. A kinetic model for the hydrochloric acid leaching of kaolinite clay in the presence of fluoride ions[J]. Hydrometallurgy, 1985, 15(2): 143-158.

    [88] [88] FORD K J R. Leaching of fine and pelletised Natal Kaolin using sulphuric acid[J]. Hydrometallurgy, 1992, 29(1-3): 109-130.

    [89] [89] BELVER C, BAARES MUOZ M A, VICENTE M A. Chemical activation of a kaolinite under acid and alkaline conditions[J]. Chem Mater, 2002, 14(5): 2033-2043.

    [91] [91] RZA ALTOKKA M, AKALN H, MELEK N, et al. Investigation of the dissolution kinetics of meta-Kaolin in H2SO4 solution[J]. Ind Eng Chem Res, 2010, 49(24): 12379-12382.

    [92] [92] LIMA P E A, ANGLICA R S, NEVES R F. Dissolution kinetics of metakaolin in sulfuric acid: comparison between heterogeneous and homogeneous reaction methods[J]. Appl Clay Sci, 2014, 88-89: 159-162.

    [93] [93] LIMA P E A, ANGLICA R S, NEVES R F. Dissolution kinetics of Amazonian metakaolin in hydrochloric acid[J]. Clay Miner, 2017, 52(1): 75-82.

    [94] [94] CHRISTIAN JW. The Theory of Transformation in Metals and Alloys[M]. Pergamon, 1965: 471.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Zongxian, WANG Qiang. Reseach Development on Dissolution Kinetics of Fly Ash and Metakaolin[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2507

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 19, 2023

    Accepted: --

    Published Online: Oct. 7, 2023

    The Author Email: Zongxian HUANG (huang-zx18@mails.tsinghua.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics