Infrared and Laser Engineering, Volume. 49, Issue 1, 103002(2020)

Research on the preparation, structure and infrared properties of Sb2Te3 quantum dots

Liang Jing1,2,3, Zhou Liangliang1,2,3, Li Bin1,2,3, Li Xueming1, and Tang Libin2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(38)

    [1] [1] Yavorsky B Y, Hinsche N F, Mertig I, et al. Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3[J]. Physical Review B Condensed Matter, 2011, 84(16):3529-3538.

              Yavorsky B Y, Hinsche N F, Mertig I, et al. Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3[J]. Physical Review B Condensed Matter, 2011, 84(16):3529-3538.

    [3] [3] Hu S, Tang R, Tian C, et al. The influence of thickness on the properties of Sb2Te3 thin films and its application in CdS/CdTe thin film solar cells[J]. Specialized Collections, 2011, 225-226: 789-793.

              Hu S, Tang R, Tian C, et al. The influence of thickness on the properties of Sb2Te3 thin films and its application in CdS/CdTe thin film solar cells[J]. Specialized Collections, 2011, 225-226: 789-793.

    [4] [4] Souza S M, Poffo C M, Trichês D M, et al. High pressure monoclinic phases of Sb2Te3[J]. Physica B Condensed Matter, 2012, 407(18): 3781-3789.

              Souza S M, Poffo C M, Trichês D M, et al. High pressure monoclinic phases of Sb2Te3[J]. Physica B Condensed Matter, 2012, 407(18): 3781-3789.

    [5] [5] Fang B, Zeng Z, Yan X, et al. Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(4): 1105-1111.

              Fang B, Zeng Z, Yan X, et al. Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(4): 1105-1111.

    [6] [6] Hinsche N F, Zastrow S, Gooth J, et al. Impact of the topological surface state on the thermoelectric transport in Sb2Te3 thin films[J]. Acs Nano, 2015, 9(4): 4406-4411.

              Hinsche N F, Zastrow S, Gooth J, et al. Impact of the topological surface state on the thermoelectric transport in Sb2Te3 thin films[J]. Acs Nano, 2015, 9(4): 4406-4411.

    [7] [7] Shen H, Lee S, Kang J G, et al. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films[J]. Applied Surface Science, 2017, 429: 115-120.

              Shen H, Lee S, Kang J G, et al. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films[J]. Applied Surface Science, 2017, 429: 115-120.

    [8] [8] Yang J, Zhu W, Gao X, et al. Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy[J]. Journal of Physical Chemistry B, 2006, 110(10): 4599-4604.

              Yang J, Zhu W, Gao X, et al. Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy[J]. Journal of Physical Chemistry B, 2006, 110(10): 4599-4604.

    [9] [9] Hao G, Qi X, Wang G, et al. Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties[J]. RSC Advances, 2012, 2(28): 10694-10699.

              Hao G, Qi X, Wang G, et al. Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties[J]. RSC Advances, 2012, 2(28): 10694-10699.

    [10] [10] Zhou J, Wang Y, Sharp J, et al. Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites[J]. Physical Review B (Condensed Matter and Materials Physics), 2012, 85(11): 115320.

              Zhou J, Wang Y, Sharp J, et al. Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites[J]. Physical Review B (Condensed Matter and Materials Physics), 2012, 85(11): 115320.

    [11] [11] Peng C, Wu L, Song Z, et al. Performance improvement of Sb2Te3 phase change material by Al doping[J]. Applied Surface Science, 2011, 257(24): 10667-10670.

              Peng C, Wu L, Song Z, et al. Performance improvement of Sb2Te3 phase change material by Al doping[J]. Applied Surface Science, 2011, 257(24): 10667-10670.

    [12] [12] Dong G H, Zhu Y J, Chen L D. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering[J]. Journal of Materials Chemistry, 2010, 20(10): 1976-1981.

              Dong G H, Zhu Y J, Chen L D. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering[J]. Journal of Materials Chemistry, 2010, 20(10): 1976-1981.

    [13] [13] Schulz S, Heimann S, Friedrich J, et al. Synthesis of hexagonal Sb2Te3 nanoplates by thermal decomposition of the single-source precursor (Et2Sb)2Te[J]. Chemistry of Materials, 2012, 24(11): 2228-2234.

              Schulz S, Heimann S, Friedrich J, et al. Synthesis of hexagonal Sb2Te3 nanoplates by thermal decomposition of the single-source precursor (Et2Sb)2Te[J]. Chemistry of Materials, 2012, 24(11): 2228-2234.

    [14] [14] Zheng B, Xiao Z, Chhay B, et al. Thermoelectric properties of MeV Si ion bombarded Bi2Te3/Sb2Te3 superlattice deposited by magnetron sputtering[J]. Surface & Coatings Technology, 2009, 203(17):2682-2686.

              Zheng B, Xiao Z, Chhay B, et al. Thermoelectric properties of MeV Si ion bombarded Bi2Te3/Sb2Te3 superlattice deposited by magnetron sputtering[J]. Surface & Coatings Technology, 2009, 203(17):2682-2686.

    [15] [15] Aksela S, Patanen M, Urpelainen S, et al. Direct experimental determination of atom-molecule-solid binding energy shifts for Sb and Bi[J]. New Journal of Physics, 2010, 12(6):063003.

              Aksela S, Patanen M, Urpelainen S, et al. Direct experimental determination of atom-molecule-solid binding energy shifts for Sb and Bi[J]. New Journal of Physics, 2010, 12(6):063003.

    [16] [16] Asish P, Sang S E, Fan Y, et al. Broadband, self-biased photodiode based on antimony telluride (Sb2Te3) nanocrystals/silicon heterostructure[J]. Nanoscale, 2018, 10(31): 15003-15009.

              Asish P, Sang S E, Fan Y, et al. Broadband, self-biased photodiode based on antimony telluride (Sb2Te3) nanocrystals/silicon heterostructure[J]. Nanoscale, 2018, 10(31): 15003-15009.

    [17] [17] Khusayfan N M, Qasrawi A F, Khanfar H. Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices[J]. Materials Research Express, 2018, 5(2): 026303.

              Khusayfan N M, Qasrawi A F, Khanfar H. Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices[J]. Materials Research Express, 2018, 5(2): 026303.

    [18] [18] Lu Xiaowei, Khatib Omar, Du Xutao, et al. Nanoimaging of electronic heterogeneity in Bi2Se3 and Sb2Te3 nanocrystals[J]. Advanced Electronic Materials, 2018, 4(1): 1700377.

              Lu Xiaowei, Khatib Omar, Du Xutao, et al. Nanoimaging of electronic heterogeneity in Bi2Se3 and Sb2Te3 nanocrystals[J]. Advanced Electronic Materials, 2018, 4(1): 1700377.

    [19] [19] Lu Hua, Dai Siqing, Yue Zengji, et al. Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring[J]. Nanoscale, 2019, 11(11): 4759-4766.

              Lu Hua, Dai Siqing, Yue Zengji, et al. Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring[J]. Nanoscale, 2019, 11(11): 4759-4766.

    [20] [20] Al-Masoodi A H H, Fauzan A, Ahmed M H M, et al. Q-switched and mode-locked ytterbium-doped fibre lasers with Sb2Te3 topological insulator saturable absorber[J]. IET Optoelectronics, 2018, 12(4): 180-184.

              Al-Masoodi A H H, Fauzan A, Ahmed M H M, et al. Q-switched and mode-locked ytterbium-doped fibre lasers with Sb2Te3 topological insulator saturable absorber[J]. IET Optoelectronics, 2018, 12(4): 180-184.

    Tools

    Get Citation

    Copy Citation Text

    Liang Jing, Zhou Liangliang, Li Bin, Li Xueming, Tang Libin. Research on the preparation, structure and infrared properties of Sb2Te3 quantum dots[J]. Infrared and Laser Engineering, 2020, 49(1): 103002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 特约专栏———新型红外器件

    Received: Nov. 5, 2019

    Accepted: Dec. 15, 2019

    Published Online: Jun. 8, 2020

    The Author Email:

    DOI:10.3788/irla202049.0103002

    Topics