Infrared and Laser Engineering, Volume. 52, Issue 7, 20220898(2023)

Grinding simulation and process optimization method of tungsten carbide alloy

Bo Yin1,2, Changxi Xue1,2, and Chuang Li1,2
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2Key Laboratory of Advanced Optical System Design and Manufacturing Technology of the Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    Figures & Tables(18)
    Setting windows for (a) constitutive model and (b) Johnson-Cook separation criterion
    Grinding finite element simulation modeling
    Figure of grinding simulation result
    Trend diagram of surface node displacement with sampling distance
    Variation trend of surface roughness with grinding depth
    Variation trend of surface roughness with feed rate
    Variation trend of surface roughness with grinding wheel speed
    Variation trend of surface roughness with workpiece speed
    Precitech Nanoform 700 ultra-precision machining machine
    Main effect diagram of mean surface roughness of tungsten carbide alloy element
    Grinding results. (a) Aspherical core; (b) Surface roughness test diagram about 0.5 mm from the center of the core; (c) Surface roughness test diagram about 4.5 mm from the center of the core
    • Table 1. Parameters of Johnson-Cook constitutive model for WC-6%Co tungsten carbide alloy

      View table
      View in Article

      Table 1. Parameters of Johnson-Cook constitutive model for WC-6%Co tungsten carbide alloy

      $A/{\rm{GPa}}$$B/{\rm{GPa}}$$C$$m$$n$${T_{{r} } }/{\rm{K} }$${T_{{m} } }/{\rm{K} }$
      3.089.00.01.00.65293.151768
    • Table 2. Failure strain parameters of WC-6%Co tungsten carbide alloy material

      View table
      View in Article

      Table 2. Failure strain parameters of WC-6%Co tungsten carbide alloy material

      $ {d_1} $$ {d_2} $$ {d_3} $$ {d_4} $$ {d_5} $
      0.00.0019−3.00.00.0
    • Table 3. Performance parameters of WC-6%Co tungsten carbide alloy workpiece

      View table
      View in Article

      Table 3. Performance parameters of WC-6%Co tungsten carbide alloy workpiece

      Material propertiesValue
      Density/kg·m314770
      Young’s modulus/GPa620
      Shear modulus/GPa255
      Poisson’s ratio0.215
      Specific heat/J·(kg·K)−1250
      Thermal conductivity/W·mK−195
    • Table 4. Process parameters of simulation

      View table
      View in Article

      Table 4. Process parameters of simulation

      ParameterValue
      ap/μm 1, 1.4, 1.8, 2.2, 2.6
      Vf/mm·min−10.5, 1, 1.5, 2
      n1/r·min−125000, 30000, 35000, 40000
      n2/r·min−1100, 200, 300, 400
    • Table 5. Control factors and level of orthogonal grinding experiment

      View table
      View in Article

      Table 5. Control factors and level of orthogonal grinding experiment

      Control factorsFactor 1Factor 2Factor 3
      ap/μm 11.41.8
      Vf/mm·min−10.511.5
      n2/r·min−1100200300
    • Table 6. Orthogonal experimental data of tungsten carbide alloy elements

      View table
      View in Article

      Table 6. Orthogonal experimental data of tungsten carbide alloy elements

      No.ap/μm Vf/mm·min−1n2/r·min1Ra/nm
      110.51005.121
      2112003.166
      311.53004.517
      41.40.52008.189
      51.413009.864
      61.41.510012.376
      71.80.530014.493
      81.8110013.556
      91.81.520016.083
    • Table 7. Parameters of the designed aspherical core

      View table
      View in Article

      Table 7. Parameters of the designed aspherical core

      ParameterValue
      c/mm−10.066646
      k0
      a4−4.541281×10−8
      a62.553217×10−10
      a83.008794×10−11
    Tools

    Get Citation

    Copy Citation Text

    Bo Yin, Changxi Xue, Chuang Li. Grinding simulation and process optimization method of tungsten carbide alloy[J]. Infrared and Laser Engineering, 2023, 52(7): 20220898

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical fabrication

    Received: Dec. 27, 2022

    Accepted: --

    Published Online: Aug. 16, 2023

    The Author Email:

    DOI:10.3788/IRLA20220898

    Topics