Journal of Applied Optics, Volume. 44, Issue 4, 768(2023)

Re-detection method for long-term tracking based on improved two-stage detection networks

Nianfu ZHAO1...2, Lin WANG1,2, Xiangjun WANG1,2, and Wenliang CHEN12,* |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • 2MOEMS Education Ministry Key Laboratory, Tianjin University, Tianjin 300072, China
  • show less
    References(21)

    [1] [1] LUKEŽIČ A, ZAJC L Č, VOJÍŘ T, et al. Now you see me: evaluating performance in long-term visual tracking[EB/OL]. [2022-07-25]. https://arxiv.org/abs/1804.07056.

    [3] [3] LUKEI A , ZAJC L E , T VOJÍ, et al. Performance evaluation methodology for long-term visual object tracking[EB/OL]. [2022-07-25]. https://doc.taixueshu.com/foreign/arXiv190608675.html.

    [4] [4] LI B, WU W, WANG Q, et al. Siamrpn++: Evolution of siamese visual tracking with very deep networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 4282-4291.

    [5] [5] DANELLJAN M, BHAT G, KHAN F S, et al. Atom: Accurate tracking by overlap maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 4660-4669.

    [6] [6] KARTHIK S, MOUDGIL A, GANDHI V. Exploring 3 R's of long-term tracking: redetection, recovery and reliability[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE, 2020: 1011-1020.

    [7] [7] ZHANG Y H, WANG D, WANG L J, et al. Learning regression and verification networks for long-term visual tracking[EB/OL]. [2022-07-25]. https://arxiv.org/abs/1809.04320v1.

    [8] [8] CHOI S, LEE J, LEE Y, et al. Robust long-term object tracking via improved discriminative model prediction[C]//European Conference on Computer Vision. Switzerland: Springer, Cham, 2020: 602-617.

    [9] [9] HUANG L, ZHAO X, HUANG K. Bridging the gap between detection and tracking: a unified approach[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2019: 3999-4009.

    [10] [10] DAVE A, TOKMAKOV P, SCHMID C, et al. Learning to track any object[EB/OL]. [2022-07-25]. https://arxiv.org/abs/1910.11844v1.

    [11] [11] LI Z, WANG Q, GAO J, et al. Globally spatial-temporal perception: a long-term tracking system[C]//2020 IEEE International Conference on Image Processing (ICIP). New York: IEEE, 2020: 2066-2070.

    [13] [13] HUANG L, ZHAO X, HUANG K. Globaltrack: a simple and strong baseline for long-term tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7): 11037-11044.

    [14] [14] DAI K N, ZHANG Y H, WANG D, et al. High-performance long-term tracking with meta-updater[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 6297-6306.

    [15] [15] SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 14454-14463.

    [16] [16] LIAO B, WANG C, WANG Y, et al. Pg-net: Pixel to global matching network for visual tracking[C]//European Conference on Computer Vision. Switzerland: Springer, Cham, 2020: 429-444.

    [17] [17] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New York: IEEE, 2020: 9759-9768.

    [19] [19] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Switzerland: Springer, Cham, 2020: 213-229.

    [20] [20] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019.

    [21] [21] FAN H, LING H, LIN L, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019.

    [22] [22] YAN B, ZHAO H, WANG D, et al. 'Skimming-perusal' tracking: a framework for real-time and robust long-term tracking[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019.

    [23] [23] VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. Long-term tracking in the wild: a benchmark[C]//Proceedings of the European Conference on Computer Vision (ECCV). [S. l. ]: [s. n. ], 2018: 670-685.

    [24] [24] CEN M, JUNG C. Fully convolutional siamese fusion networks for object tracking[C]// 2018 25th IEEE International Conference on Image Processing (ICIP). New York: IEEE, 2018.

    Tools

    Get Citation

    Copy Citation Text

    Nianfu ZHAO, Lin WANG, Xiangjun WANG, Wenliang CHEN. Re-detection method for long-term tracking based on improved two-stage detection networks[J]. Journal of Applied Optics, 2023, 44(4): 768

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 1, 2022

    Accepted: --

    Published Online: Aug. 10, 2023

    The Author Email:

    DOI:10.5768/JAO202344.0402001

    Topics