Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1033(2022)

Recent Research Progress on Ultrafast Laser-Induced Selective Crystallization in Glasses

ZHANG Bo... WANG Zhuo, SUN Ke and QIU Jianrong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(81)

    [1] [1] TAN D, SUN X, WANG Q, et al. Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing[J]. Opt Lett, 2020, 45(14): 3941-3944.

    [2] [2] DAVIS K M, MIURA K, SUGIMOTO N, et al. Writing waveguides in glass with a femtosecond laser[J]. Opt Lett, 1996, 21(21): 1729-1731.

    [3] [3] LEI Y, SAKAKURA M, WANG L, et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement[J]. Optica, 2021, 8(11): 1365-1371.

    [4] [4] GECEVI?IUS M, BERESNA M, KAZANSKY P G, et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Phys Rev Lett, 2014, 112(3): 33901.

    [5] [5] MARSHALL G D, POLITI A, MATTHEWS J C F, et al. Laser written waveguide photonic quantum circuits[J]. Opt Express, 2009, 17(15):12546-12554.

    [6] [6] NASU Y, KOHTOKU M, HIBINO Y. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit[J]. Opt Lett, 2005, 30(7): 723-725.

    [7] [7] NAYAK K P, HAKUTA K. Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique[J]. Opt Express,2013, 21(2): 2480-2490.

    [8] [8] PAIVASAARI K, TIKHOMIROV V K, TURUNEN J. High refractive index chalcogenide glass for photonic crystal applications[J]. Opt Express, 2007, 15(5): 2336-2340.

    [9] [9] DELLA VALLE G, OSELLAME R, LAPORTA P. Micromachining of photonic devices by femtosecond laser pulses[J]. J Opt A: Pure Appl Opt, 2008, 11(1): 13001.

    [10] [10] FLAMINI F, MAGRINI L, RAB A S, et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining[J]. Light: Sci Appl, 2015, 4(11): e354.

    [11] [11] SUNG J H, LEE H W, YOO J Y, et al. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz[J].Opt Lett, 2017, 42(11): 2058-2061.

    [12] [12] TAN D, MA Z, XU B, et al. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution[J]. Phys Chem Chem Phys, 2011, 13(45): 20255-20261.

    [13] [13] TAN D, XU B, CHEN P, et al. One-pot synthesis of luminescent hydrophilic silicon nanocrystals[J]. RSC Adv, 2012, 2(22): 8254-8257.

    [14] [14] WANG L, CHEN Q, CAO X, et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Sci Appl, 2017, 6(12): e17112.

    [15] [15] YONG J, CHEN F, LI M, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. J Mater Chem A, 2017, 5(48): 25249-25257.

    [16] [16] RóDENAS A, GU M, CORRIELLI G, et al. Three-dimensional femtosecond laser nanolithography of crystals[J]. Nat Photon, 2019,13(2): 105-109.

    [17] [17] LIAO Y, SONG J, LI E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J].Lab on a Chip, 2012, 12(4): 746-749.

    [18] [18] WANG Z, ZHANG B, TAN D, et al. Long-term optical information storage in glass with ultraviolet-light-preprocessing-induced enhancement of the signal-to-noise ratio[J]. Opt Lett, 2021, 46(16):3937-3940.

    [19] [19] QIU J, MIURA K, SUZUKI T, et al. Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser[J]. Appl Phys Lett, 1998, 74(1): 10-12.

    [21] [21] SUNDARAM S K, MAZUR E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nat Mater, 2002, 1(4): 217-224.

    [22] [22] TAN D, ZHANG B, QIU J. Ultrafast laser direct writing in glass:Thermal accumulation engineering and applications[J]. Laser Photon Rev, 2021, 15(9): 2000455.

    [23] [23] TAN D, SHARAFUDEEN K N, YUE Y, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications[J]. Prog Mater Sci, 2016, 76: 154-228.

    [24] [24] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nat Photon, 2008, 2(4): 219-225.

    [25] [25] SHIMOTSUMA Y, HIRAO K, KAZANSKY P G, et al. Three-dimensional micro- and nano-fabrication in transparent materials by femtosecond laser[J]. Jpn J Appl Phys, 2005, 44(7A): 4735-4748.

    [26] [26] VON DER LINDE D, SOKOLOWSKI-TINTEN K, BIALKOWSKI J.Laser-solid interaction in the femtosecond time regime[J]. Appl Surface Sci, 1997, 109/110: 1-10.

    [27] [27] FOKIN V M, ZANOTTO E D, YURITSYN N S, et al. Homogeneous crystal nucleation in silicate glasses: A 40 years perspective[J]. J Non-Cryst Solids, 2006, 352(26): 2681-2714.

    [28] [28] GUTZOW I, AVRAMOV I, K?STNER K. Glass formation and crystallization[J]. J Non-Cryst Solids, 1990, 123(1): 97-113.

    [29] [29] MIYAMOTO I, CVECEK K, SCHMIDT M. Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses[J]. Opt Express, 2011, 19(11): 10714-10727.

    [30] [30] EATON S M, ZHANG H, HERMAN P R, et al. Heat accumulation effects in femtosecond laser-written waveguides with variable Express, 2005, 13(12): 4708-4716.

    [31] [31] SAKAKURA M, SHIMIZU M, SHIMOTSUMA Y, et al. Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses[J]. Appl Phys Lett, 2008, 93(23): 231112.

    [32] [32] ZHANG B, TAN D, LIU X, et al. Self-organized periodic crystallization in unconventional glass created by an ultrafast laser for optical attenuation in the broadband near-infrared region[J]. Adv Opt Mater, 2019, 7(20): 1900593.

    [33] [33] HOSONO H, KAWAMURA K, MATSUISHI S, et al. Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses[J]. Nucl Instrum Methods Phys Res Sect B, 2002, 191(1): 89-97.

    [34] [34] HNATOVSKY C, TAYLOR R S, RAJEEV P P, et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica[J]. Appl Phys Lett, 2005, 87(1): 14104.

    [35] [35] MUZI E, CAVILLON M, LANCRY M, et al. Towards a rationalization of ultrafast laser-induced crystallization in lithium niobium borosilicate glasses: The key role of the scanning speed[Z].2021: 11.

    [36] [36] MUZI E, CAVILLON M, LANCRY M, et al. Polarization controlled orientation of LiNbO3 nanocrystals induced in Li2O-Nb2O5-SiO2-B2O3 glasses by femtosecond laser irradiation[C]. Munich: Optical Society of America, 2021.

    [37] [37] STONE A, SAKAKURA M, SHIMOTSUMA Y, et al. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control[J]. Mater Design, 2018, 146: 228-238.

    [38] [38] OLIVEIRA V, SHARMA S P, HERRERO P, et al. Transformations induced in bulk amorphous silica by ultrafast laser direct writing[J].Opt Lett, 2013, 38(23): 4950-4953.

    [39] [39] DAI Y, ZHU B, QIU J, et al. Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser[J].Appl Phys Lett, 2007, 90(18): 181109.

    [40] [40] HE X, LIU Q, LANCRY M, et al. Space-selective control of functional crystals by femtosecond laser: A comparison between SrO-TiO2-SiO2 and Li2O-Nb2O5-SiO2 glasses[Z]. 2020: 10.

    [41] [41] SHIMOTSUMA Y, TOMURA K, OKUNO T, et al. Femtosecond laser-induced self-assembly of Ce3+-Doped YAG nanocrystals[Z].2020: 10.

    [42] [42] SHIMOTSUMA Y, MORI S, NAKANISHII Y, et al. Self-assembled glass/crystal periodic nanostructure in Al2O3-Dy2O3 binary glass[J]. Appl Phys A, 2018, 124(1): 82.

    [46] [46] LIU X, ZHOU J, ZHOU S, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97: 38-96.

    [47] [47] LIN H, HU T, CHENG Y, et al. Glass ceramic phosphors: Towards high-power white light-emitting-diode applications-A review[J]. Laser Photon Rev, 2018, 12(6): 1700344.

    [48] [48] ZHANG D, XIAO W, LIU C, et al. Highly efficient phosphor-glass composites by pressureless sintering[J]. Nat Commun, 2020, 11(1):2805.

    [49] [49] LIANG S, LIU Y, WANG S, et al. High-resolution in situ patterning of perovskite quantum dots via femtosecond laser direct writing[J].Nanoscale. 2021. DOI:10.1039/D1NR07516K.

    [50] [50] ZHAN W, MENG L, SHAO C, et al. In situ patterning perovskite quantum dots by direct laser writing fabrication[J]. ACS Photon, 2021,8(3): 765-770.

    [51] [51] CAO J, LANCRY M, BRISSET F, et al. Femtosecond laser-induced crystallization in glasses: growth dynamics for orientable nanostructure and nanocrystallization[J]. Cryst Growth Design, 2019, 19(4):2189-2205.

    [52] [52] STONE A, JAIN H, DIEROLF V, et al. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics[J]. Scient Rep, 2015, 5(1): 10391.

    [53] [53] SHIMOTSUMA Y, TOMURA K, OKUNO T, et al. Femtosecond laser-induced self-assembly of Ce3+-Doped YAG nanocrystals[Z].2020: 10.

    [54] [54] FAN C, POUMELLEC B, LANCRY M, et al. Three-dimensional photoprecipitation of oriented LiNbO3-like crystals in silica-based glass with femtosecond laser irradiation[J]. Opt Lett, 2012, 37(14):2955-2957.

    [58] [58] MIURA K, QIU J, MITSUYU T, et al. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses[J]. Opt Lett, 2000, 25(6): 408-410.

    [59] [59] YONESAKI Y, MIURA K, ARAKI R, et al. Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser[J]. J Non-Cryst Solids, 2005, 351(10):885-892.

    [60] [60] DAI Y, ZHU B, QIU J, et al. Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser[J]. Chem Phys Lett, 2007, 443(4): 253-257.

    [61] [61] DAI Y, MA H, LU B, et al. Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass[J]. Opt Express, 2008,16(6): 3912-3917.

    [62] [62] STONE A, SAKAKURA M, SHIMOTSUMA Y, et al. Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation[J]. Opt Express, 2009, 17(25):23284-23289.

    [63] [63] STONE A, SAKAKURA M, SHIMOTSUMA Y, et al. Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass[J]. Opt Mater Express, 2011, 1(5): 990-995.

    [64] [64] STONE A, JAIN H, DIEROLF V, et al. Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating[J]. J Opt Soc Am B, 2013, 30(5):1234-1240.

    [65] [65] SUN W, DIEROLF V, JAIN H. Molecular dynamics simulation of the effect of cooling rate on the structure and properties of lithium disilicate glass[J]. J Non-Cryst Solids, 2021, 569: 120991.

    [66] [66] GOLOVCHAK R, CALVEZ L, LECOMTE A, et al. The structure of Ga-Sb-Se glasses by high-resolution X-ray photoelectron spectroscopy[J]. Phys Status Solidi (b), 2021, 258(6): 2100074.

    [67] [67] AU-YEUNG C, STAN C, TAMURA N, et al. In situ study of rotating lattice single-crystal formation in Sb2S3 glass by Laue μXRD[J]. J Am Ceram Soc, 2020, 103(7): 3954-3961.

    [68] [68] ZHANG B, LIU X, QIU J. Single femtosecond laser beam induced nanogratings in transparent media - Mechanisms and applications[J]. J Materiomics, 2019, 5(1): 1-14.

    [70] [70] CAO J, MAZEROLLES L, LANCRY M, et al. Form birefringence induced in multicomponent glass by femtosecond laser direct writing[J]. Opt Lett, 2016, 41(12): 2739-2742.

    [71] [71] ZHANG B, WANG Z, TAN D, et al. Ultrafast laser inducing continuous periodic crystallization in the glass activated via laser-prepared crystallite-seeds[J]. Adv Opt Mater, 2021, 9(8):2001962.

    [72] [72] SCHAFFER C B, BRODEUR A, MAZUR E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Measure Sci Technol,2001, 12(11): 1784-1794.

    [73] [73] GERTSVOLF M, SIMOVA E, HNATOVSKY C, et al. Memory in nonlinear ionization of transparent solids[J]. Phys Rev Lett, 2006,97(25): 253001.

    [74] [74] NOLTE S, PESCHEL U, BUSCHLINGER R. Self-organized pattern formation in laser-induced multiphoton ionization[J]. Phys Rev B,2014, 89(18): 184306.

    [75] [75] ZHANG B, TAN D, WANG Z, et al. Self-organized phase-transition lithography for all-inorganic photonic textures[J]. Light: Sci Appl,2021, 10(1): 93.

    [76] [76] SUN S, YUAN D, XU Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature[J]. ACS Nano, 2016, 10(3):3648-3657.

    [77] [77] LI X, WU Y, ZHANG S, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities,underlying origins and white light-emitting diodes[J]. Adv Funct Mater,2016, 26(15): 2435-2445.

    [78] [78] WEI Y, DENG X, XIE Z, et al. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance[J]. Adv Funct Mater, 2017, 27(39): 1703535.

    [79] [79] XIANG S, FU Z, LI W, et al. Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum[J]. ACS Energy Lett, 2018, 3(8): 1824-1831.

    [80] [80] YUAN S, CHEN D, LI X, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J]. ACS Appl Mater Interfaces, 2018, 10(22): 18918-18926.

    [81] [81] CAI Y, CUI J, CHEN M, et al. Multifunctional enhancement for highly stable and efficient perovskite solar cells[J]. Adv Funct Mater, 2021,31(7): 2005776.

    [82] [82] HWANG I, JEONG I, LEE J, et al. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation[J]. ACS Appl Mater Interfaces, 2015, 7(31): 17330-17336.

    [83] [83] HU Y, ZHANG W, YE Y, et al. Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion[J]. ACS Appl Nano Mater, 2020, 3(1): 850-857.

    [84] [84] DU Y, WANG X, SHEN D, et al. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers[J]. Chem Eng J, 2020, 401: 126132.

    [85] [85] HUANG X, GUO Q, YANG D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nat Photon,2020, 14(2): 82-88.

    [86] [86] HUANG X, GUO Q, KANG S, et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence[J]. ACS Nano, 2020, 14(3):3150-3158.

    [87] [87] SUN K, TAN D, SONG J, et al. Highly emissive deep-red perovskite quantum dots in glass: photoinduced thermal engineering and applications[J]. Adv Opt Mater, 2021, 9(11): 2100094.

    [88] [88] LIU C, KWON Y K, HEO J, et al. Controlled precipitation of lead sulfide quantum dots in glasses using the femtosecond laser pulses[J]. J Am Ceram Soc, 2010, 93(5): 1221-1224.

    [89] [89] QIU J, SHIRAI M, NAKAYA T, et al. Space-selective precipitation of metal nanoparticles inside glasses[J]. Appl Phys Lett, 2002, 81(16):3040-3042.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Bo, WANG Zhuo, SUN Ke, QIU Jianrong. Recent Research Progress on Ultrafast Laser-Induced Selective Crystallization in Glasses[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1033

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 26, 2021

    Accepted: --

    Published Online: Nov. 13, 2022

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20211018

    Topics