Journal of Applied Optics, Volume. 40, Issue 6, 1152(2019)

Recent advances of photoacoustic spectroscopy techniques for gases sensing

CAO Yuan... XIE Yingchao, WANG Ruifeng, LIU Kun, GAO Xiaoming and ZHANG Weijun |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(51)

    [1] [1] BELL A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880 (118): 305-324.

    [2] [2] KERR E L, ATWOOD J G. The laser illuminated absorptivity spectrophone: A method for measurement of weak absorptivity in gases at laser wavelengths[J]. Applied Optics, 1968, 7(5): 915-921.

    [3] [3] KREUZER L B. Ultralow gas concentration infrared absorption spectroscopy[J]. Journal of Applied Physics,1971, 42(7): 2934-2943.

    [4] [4] HARSHBARGER W R, ROBIN M B. Opto-acoustic effect: Revival of an old technique for molecular spectroscopy[J]. Accounts of Chemical Research, 1973, 6(10): 329-334.

    [5] [5] BRUCE C W, PINNICK R G. In-situ measurements of aerosol absorption with a resonant cw laser spectrophone[J]. Applied Optics, 1977, 16(7): 1762.

    [6] [6] YIN X K, DONG L, WU H P, et al. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5W blue multimode diode laser[J]. Sensors and Actuators B: Chemical, 2017, 247: 329-335.

    [7] [7] ZHOU Y, CAO Y, ZHU G D, et al. Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser[J]. Acta Phys. Sin., 2018,67: 084201-1-084201-7.

    [8] [8] DEWEY C F Jr, KAMM R D, HACKETT C E. Acoustic amplifier for detection of atmospheric pollutants[J]. Applied Physics Letters,1973, 23(11): 633-635.

    [9] [9] KAMM R D. Detection of weakly absorbing gases using a resonant optoacoustic method[J]. Journal of Applied Physics,1976, 47(8): 3550-3558.

    [10] [10] GUPTA J P, SACHDEV R N. Theoretical model of an optoacoustic detector[J]. Applied Physics Letters,1980, 36(12): 960-962.

    [11] [11] BIJNEN F G C, REUSS J, HARREN F J M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Review of Scientific Instruments,1996, 67(8): 2914-2923.

    [12] [12] MIKLS A, HESS P, BOZKI Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology[J]. Review of Scientific Instruments,2001, 72(4): 1937-1955.

    [13] [13] CHENG G, CAO Y, LIU K, et al. Photoacoustic measurement of ethane with near-infrared DFB diode laser[J]. Journal of Spectroscopy, 2018,9765806: 1-5.

    [14] [14] YIN X K, DONG L, WU H P, et al. Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell[J]. Applied Physics Letters,2017, 111(3): 031109.

    [15] [15] YIN X K, WU H P, DONG L, et al. Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser[J]. Sensors and Actuators B: Chemical,2019,282: 567-573.

    [16] [16] YIN X K, DONG L, WU H P, et al. Highly sensitive SO_2 photoacoustic sensor for SF_6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm[J]. Optics Express,2017,25(26): 32581.

    [17] [17] ZHA S L, LIU K, ZHU G D, et al. Acetylene detection based on resonant high sensitive photoacoustic spectroscopy[J] Spectrosc. Spectr. Anal. ,2017,37: 2673-2678.

    [18] [18] MA Y F, QIAO S D, HE Y, et al. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser[J]. Optics Express, 2019, 27(10): 14163.

    [19] [19] WANG Q, WANG Z, CHANG J, et al. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing[J]. Optics Letters, 2017, 42(11): 2114.

    [20] [20] HAN L, CHEN X L, XIA H, et al. A novel photocoustic spectroscopy system for gas detection based on the multi-pass cell [J].Proceedings of the SPIE,2016,10025: 100250N-1-100250N-7.

    [21] [21] WANG Z, WANG Q, ZHANG W P, et al. Ultrasensitive photoacoustic detection in a high-finesse cavity with pound-drever-hall locking[J]. Optics Letters, 2019, 44(8): 1924.

    [22] [22] WILCKEN K, KAUPPINEN J. Optimization of a microphone for photoacoustic spectroscopy[J]. Applied Spectroscopy, 2003, 57(9): 1087-1092.

    [23] [23] KOSKINEN V, FONSEN J, ROTH K, et al. Progress in cantilever enhanced photoacoustic spectroscopy[J]. Vibrational Spectroscopy, 2008, 48(1): 16-21.

    [24] [24] LAURILA T, CATTANEO H, PYHNEN T, et al. Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser[J]. Applied Physics B, 2006, 83(2): 285-288.

    [25] [25] DOSTL M, SUCHNEK J, VLEK V, et al. Cantilever-enhanced photoacoustic detection and infrared spectroscopy of trace species produced by biomass burning[J]. Energy & Fuels, 2018, 32(10): 10163-10168.

    [26] [26] MIKKONEN T, AMIOT C, AALTO A, et al. Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum[J]. Optics Letters, 2018, 43(20): 5094.

    [27] [27] TOMBERG T, VAINIO M, HIETA T, et al. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy[J]. Scientific Reports, 2018, 8: 1848.

    [28] [28] CHEN K, YU Z H, YU Q X, et al. Fast demodulated white-light interferometry-based fiber-optic Fabry-Perot cantilever microphone[J]. Optics Letters, 2018, 43(14): 3417-3420.

    [29] [29] CHEN K, ZHANG B, LIU S, et al. Parts-per-billion-level detection of hydrogen sulfide based on near-infrared all-optical photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical, 2019, 283: 1-5.

    [30] [30] LIU K, CAO Y, WANG G S, et al. A novel photoacoustic spectroscopy gas sensor using a low cost polyvinylidene fluoride film[J]. Sensors and Actuators B: Chemical, 2018, 277: 571-575.

    [31] [31] KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2002, 27(21): 1902-1904.

    [32] [32] DONG L, KOSTEREV A A, THOMAZY D, et al. QEPAS spectrophones: design, optimization, and performance[J]. Applied Physics B, 2010, 100(3): 627-635.

    [33] [33] DONG L, WU H P, ZHENG H D, et al. Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy[J].Opt. Lett.,2014,39: 2479-2482.

    [34] [34] LIU K, GUO X Y, YI H M, et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2009, 34(10): 1594-1596.

    [35] [35] LI Z L, SHI C, REN W. Mid-infrared multimode fiber-coupled quantum cascade laser for off-beam quartz-enhanced photoacoustic detection[J]. Optics Letters, 2016, 41(17): 4095-4098.

    [36] [36] YI H M, LIU K, CHEN W D, et al. Application of a broadband blue laser diode to trace NO_2 detection using off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2011, 36(4): 481-483.

    [37] [37] ZHENG H D, DONG L, YIN X K, et al. Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED[J]. Sensors and Actuators B: Chemical, 2015, 208: 173-179.

    [38] [38] RCK T, BIERL R, MATYSIK F. NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise[J]. Sensors and Actuators B: Chemical, 2018, 255: 2462-2471.

    [39] [39] BTTGER S, KHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Applied Physics B, 2013, 113(2): 227-232.

    [40] [40] LASSEN M, LAMARD L, FENG Y Y, et al. Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator[J]. Optics Letters, 2016, 41(17): 4118-4121.

    [41] [41] HU L E, ZHENG C T, ZHENG J, et al. Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2019, 44(10): 2562-2565.

    [42] [42] BORRI S, PATIMISCO P, GALLI I, et al. Intracavity quartz-enhanced photoacoustic sensor[J]. Applied Physics Letters, 2014, 104(9): 143-162.

    [43] [43] HE Y, MA Y F, TONG Y, et al. HCN ppt-level detection based on a QEPAS sensor with amplified laser and a miniaturized 3D-printed photoacoustic detection channel[J]. Optics Express, 2018, 26(8): 9666-9675.

    [44] [44] PATIMISCO P, BORRI S, SAMPAOLO A, et al. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser[J]. The Analyst, 2014, 139(9): 2079-2087.

    [45] [45] Borri S, Patimisco P, Sampaolo A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Applied Physics Letters, 2013, 103(2): 579.

    [46] [46] SAMPAOLO A, PATIMISCO P, GIGLIO M, et al. Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy[J]. Sensors, 2016, 16(4): 439.

    [47] [47] SPAGNOLO V, PATIMISCO P, PENNETTA R, et al. THz quartz-enhanced photoacoustic sensor for H S trace gas detection[J]. Optics Express, 2015, 23(6): 7574-7582.

    [48] [48] PATIMISCO P, SCAMARCIO G, TITTEL F, et al. Quartz-enhanced photoacoustic spectroscopy: A review[J]. Sensors, 2014, 14(4): 6165-6206.

    [49] [49] PATIMISCO P, SAMPAOLO A, DONG L, et al. Recent advances in quartz enhanced photoacoustic sensing[J]. Applied Physics Reviews, 2018, 5(1): 011106.

    [50] [50] WU H P, YIN X K, DONG L, et al. Simultaneous dual-gas qepas detection based on a fundamental and overtone combined vibration of quartz tuning fork[J].Appl. Phys. Lett., 2017, 110: 121104-1-121104-4.

    [51] [51] LIU K, MEI J X, ZHANG W J, et al. Multi-resonator photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical,2017, 251: 632-636.

    Tools

    Get Citation

    Copy Citation Text

    CAO Yuan, XIE Yingchao, WANG Ruifeng, LIU Kun, GAO Xiaoming, ZHANG Weijun. Recent advances of photoacoustic spectroscopy techniques for gases sensing[J]. Journal of Applied Optics, 2019, 40(6): 1152

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 17, 2019

    Accepted: --

    Published Online: Feb. 11, 2020

    The Author Email:

    DOI:10.5768/jao201940.0605003

    Topics