Chinese Journal of Quantum Electronics, Volume. 41, Issue 2, 278(2024)
Synchronization characteristics of deep ultraviolet femtosecond pulse amplified by excimer laser
[1] González-Castrillo A, Martín F, Palacios A. Quantum state holography to reconstruct the molecular wave packet using an attosecond XUV-XUV pump-probe technique[J]. Scientific Reports, 10, 12981(2020).
[2] Wang L, Zhang S, Wang Y et al. The geometry relaxation and photodeactivation from the S2 state of dibenzofuran studied by ultrafast spectroscopy[J]. Zeitschrift Für Physikalische Chemie, 234, 1495-1506(2020).
[3] Vayá I, Andreu I, Lence E et al. Characterization of locally excited and charge-transfer states of the anticancer drug lapatinib by ultrafast spectroscopy and computational studies[J]. Chemistry - A European Journal, 26, 15922-15930(2020).
[4] Wang Y, Zhang S, Zhang B. Femtosecond transient absorption spectroscopy and its applications[J]. Chinese Journal of Quantum Electronics, 38, 547-563(2021).
[5] Minai L, Yeheskely-Hayon D, Yelin D. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation[J]. Scientific Reports, 3, 2146(2013).
[6] Almeida G B, Nolasco L K, Barbosa G R et al. Incubation effect during laser micromachining of GaN films with femtosecond pulses[J]. Journal of Materials Science: Materials in Electronics, 30, 16821-16826(2019).
[7] Li F, Yang Z, Lv Z G et al. High energy femtosecond laser micromachining with hollow core photonic crystal fiber delivery[J]. Optik, 194, 163093(2019).
[8] Shin H, Kim D. Cutting thin glass by femtosecond laser ablation[J]. Optics and Laser Technology, 102, 1-11(2018).
[9] Triplett M, Khaydarov J, Xu X Z et al. Multi-watt, broadband second-harmonic-generation in MgO: PPSLT waveguides fabricated with femtosecond laser micromachining[J]. Optics Express, 27, 21102(2019).
[10] Geiko P P, Privalov V E, Romanovskii O A et al. Application of frequency converters to femtosecond laser radiation for lidar monitoring of the atmosphere[J]. Optics and Spectroscopy, 108, 80-85(2010).
[11] Zhang J. Basic Study of Ultrashort Pulse Laser Energy Storage Ring[D](2003).
[12] Bi J J. Widely used ultraviolet laser[J]. Laser & Optoelectronics Progress, 37, 38-40(2000).
[13] Rebollar E, Vázquez D, Pérez-Hernández J A et al. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films[J]. Applied Physics Letters, 100, 3688(2012).
[14] Harzic R L, König K, Wüllner C et al. Ultraviolet femtosecond laser creation of corneal flap[J]. Journal of Refractive Surgery, 25, 383-389(2009).
[15] RobertS S, Sally Z, JohnA P. Skin carcinoma in patients with psoriasis treated with topical tar and artificial ultraviolet radiation[J]. The Lancet, 315, 732-735(1980).
[16] Vengris M, Gabryte E, Aleknavicius A et al. Corneal shaping and ablation of transparent media by femtosecond pulses in deep ultraviolet range[J]. Journal of Cataract and Refractive Surgery, 36, 1579-1587(2010).
[17] Wang D. Generation and Applications of DUV and VUV Femtosecond Laser[D](2016).
[18] Wang Z, Zhang J, Li J et al. Amplification and beam combination of ultra-short KrF laser pulse[J]. High Power Laser and Particle Beams, 32, 190460(2020).
[19] McIntyre I A, Rhodes C K. High power ultrafast excimer lasers[J]. Journal of Applied Physics, 69, R1-R19(1991).
[20] Glownia J H, Kaschke M, Sorokin P P. Amplification of 193-nm femtosecond seed pulses generated by third-order, nonresonant, difference-frequency mixing in xenon[J]. Optics Letters, 17, 337-339(1992).
[21] Bates J W, Myatt J F, Shaw J G et al. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth[J]. Physical Review E, 97, 061202(2018).
[22] Szatmári S. High-brightness ultraviolet excimer lasers[J]. Applied Physics B, 58, 211-223(1994).
[23] Tomov I V, Fedosejevs R, Richardson M C et al. Picosecond gain and saturation measurements of the 353-nm XeF laser line[J]. Applied Physics Letters, 31, 747-749(1977).
[24] Mossavi K, Hofmann T, Szabó G et al. Femtosecond gain characteristics of the discharge-pumped ArF excimer amplifier[J]. Optics Letters, 18, 435-437(1993).
[25] Mossavi K, Hofmann T, Tittel F K et al. Ultrahigh-brightness, femtosecond ArF excimer laser system[J]. Applied Physics Letters, 62, 1203-1205(1993).
[26] Momma C, Eichmann H, Jacobs H et al. Short-pulse amplification and gain dynamics of an ArF excimer amplifier[J]. Optics Letters, 18, 516-518(1993).
[27] Nabekawa Y, Yoshitomi D, Sekikawa T et al. High-average-power femtosecond KrF excimer laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 551-558(2001).
[28] Zhao Z S, Chen Y R, Hu X J et al. Researching on ArF oscillator amplifier excimer laser[J]. Acta Optica Sinica, 17, 140-145(1997).
[29] Tang X Z, Zhang H F, Li J et al. High power UV ultrashort pulse laser[J]. Atomic Energy Science and Technology, 36, 112-116(2002).
[30] Zhao X Q, Liu J R, Yi A P et al. Amplification of high power short pulse excimer laser with beam smoothing[J]. Optics and Precision Engineering, 19, 397-406(2011).
[31] Zhang Y L. Measurement of Deep Ultraviolet Femtosecond Laser Pulse Width[D](2021).
Get Citation
Copy Citation Text
Jun FAN, Lizhao YANG, Libing YOU, Dandan RONG, Hongwei WANG, Chao CUN, Xiaodong FANG. Synchronization characteristics of deep ultraviolet femtosecond pulse amplified by excimer laser[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 278
Category:
Received: Mar. 15, 2022
Accepted: --
Published Online: Jun. 24, 2024
The Author Email: