Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 203(2024)

Phonon Engineering in Bi2Te3-Based Thermoelectric Materials

LIU Zhiyuan1...2,*, GUAN Xicheng1, LI Zhou3, MA Ni4, MA Junjie1, BA Qian1, XIA Ailin1 and JIN Chuangui1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(169)

    [1] [1] MAHAN G, SALES B, SHARP J. Thermoelectric materials: New approaches to an old problem[J]. Phys Today, 1997, 50(3): 42-47.

    [2] [2] MANEEWAN S, KHEDARI J, ZEGHMATI B, et al. Investigation on generated power of thermoelectric roof solar collector[J]. Renew Energy, 2004, 29(5): 743-752.

    [4] [4] XIAO B, CHEN H, WU B, et al. Electric and mechanical performances of Bi0.5Sb1.5Te3 prepared by spark plasma sintering[J]. Rare Met, 2006, 25(6): 227-231.

    [5] [5] CHEN S, REN Z F. Recent progress of half-Heusler for moderate temperature thermoelectric applications[J]. Mater Today, 2013, 16(10): 387-395.

    [6] [6] SALES B C. Thermoelectric materials. Smaller is cooler[J]. Science, 2002, 295(5558): 1248-1249.

    [7] [7] ZHENG S K, PENG K L, XIAO S J, et al. Planar Zintl-phase high-temperature thermoelectric materials XCuSb (X=Ca, Sr, Ba) with low lattice thermal conductivity[J]. J Adv Ceram, 2022, 11(10): 1604-1612.

    [8] [8] ZHAO L D, DRAVID V P, KANATZIDIS M G. The panoscopic approach to high performance thermoelectrics[J]. Energy Environ Sci, 2014, 7(1): 251-268.

    [9] [9] YANG J H, YIP H L, JEN A K Y. Rational design of advanced thermoelectric materials[J]. Adv Energy Mater, 2013, 3(5): 549-565.

    [10] [10] BUX S K, FLEURIAL J P, KANER R B. Nanostructured materials for thermoelectric applications[J]. Chem Commun, 2010, 46(44): 8311-8324.

    [11] [11] LI D L, GONG Y N, CHEN Y X, et al. Recent progress of two-dimensional thermoelectric materials[J]. Nanomicro Lett, 2020, 12(1): 36.

    [12] [12] QIN Y, XIONG T, ZHU J F, et al. Realizing high thermoelectric performance of Cu and Ce co-doped p-type polycrystalline SnSe via inducing nanoprecipitation arrays[J]. J Adv Ceram, 2022, 11(11): 1671-1686.

    [13] [13] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials[J]. Angew Chem Int Ed, 2009, 48(46): 8616-8639.

    [14] [14] CHEN Z W, ZHANG X Y, PEI Y Z. Manipulation of phonon transport in thermoelectrics[J]. Adv Mater, 2018, 30(17): e1705617.

    [15] [15] BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.

    [16] [16] LI W, ZHENG L L, GE B H, et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects[J]. Adv Mater, 2017, 29(17): 1605887.

    [17] [17] ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377.

    [18] [18] KIM S I, LEE K H, MUN H A, et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 2015, 348(6230): 109-114.

    [19] [19] KIM W. Strategies for engineering phonon transport in thermoelectrics[J]. J Mater Chem C, 2015, 3(40): 10336-10348.

    [20] [20] AHMAD S, SINGH A, BOHRA A, et al. Boosting thermoelectric performance of p-type SiGe alloys through in situ metallic YSi2 nanoinclusions[J]. Nano Energy, 2016, 27: 282-297.

    [21] [21] OHTAKI M, MIYAISHI S. Extremely low thermal conductivity in oxideswith cage-like crystal structure[J]. J Electron Mater, 2013, 42(7): 1299-1302.

    [22] [22] SHAFEEK L, LAUMANN S, PROKOFIEV A, et al. Physical properties of the new cage compound Ce4Pt12Sn25[J]. J Phys: Conf Ser, 2010, 200(1): 012182.

    [23] [23] NAKAYAMA T, KUROSAKI K, OHISHI Y, et al. Thermoelectric properties of RE5X3 (RE=Gd, La, X=Si, Ge)[J]. J Jpn Inst Met Mater, 2014, 78(6): 225-229.

    [24] [24] LIU Z Y, WANG Y G, YANG T, et al. Alloying engineering for thermoelectric performance enhancement in p-type skutterudites with synergistic carrier concentration optimization and thermal conductivity reduction[J]. J Adv Ceram, 2023, 12(3): 539-552.

    [25] [25] ZHAO W Y, LIU Z Y, WEI P, et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials[J]. Nat Nanotechnol, 2017, 12(1): 55-60.

    [26] [26] YU X X, HONG J W. Absence of phonon gap driven ultralow lattice thermal conductivity in half-Heusler LuNiBi[J]. J Mater Chem C, 2021, 9(36): 12420-12425.

    [27] [27] GUO S P, LIU Z H, FENG Z Z, et al. Prediction of improved thermoelectric performance by ordering in double half-Heusler materials[J]. J Mater Chem A, 2020, 8(44): 23590-23598.

    [28] [28] LU R, LOPEZ J S, LIU Y, et al. Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance[J]. J Mater Chem A, 2019, 7(18): 11095-11103.

    [29] [29] ZAFERANI S H, GHOMASHCHI R, VASHAEE D. Strategies for engineering phonon transport in Heusler thermoelectric compounds[J]. Renewable Sustainable Energy Rev, 2019, 112: 158-169.

    [30] [30] JIANG J, CHEN L D, BAI S Q, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering[J]. Mater Sci Eng B, 2005, 117(3): 334-338.

    [31] [31] ZHANG Q, LIN Y J, LIN N, et al. Enhancing the room temperature thermoelectric performance of n-type Bismuth-telluride-based polycrystalline materials by low-angle grain boundaries[J]. Mater Today Phys, 2022, 22: 100573.

    [32] [32] WU H J, YEN W T. High thermoelectric performance in Cu-doped Bi2Te3 with carrier-type transition[J]. Acta Mater, 2018, 157: 33-41.

    [33] [33] ZHU H, ZHAO C C, NAN P F, et al. Intrinsically low lattice thermal conductivity in natural superlattice (Bi2)m(Bi2Te3)n thermoelectric materials[J]. Chem Mater, 2021, 33(4): 1140-1148.

    [34] [34] BACK S Y, YUN J H, CHO H, et al. Phonon scattering and suppression of bipolar effect in MgO/VO2 nanoparticle dispersed p-type Bi0.5Sb1.5Te3 composites[J]. Materials, 2021, 14(10): 2506.

    [35] [35] SLACK G A. The thermal conductivity of nonmetallic crystals[M]//Solid State Physics. Amsterdam: Elsevier, 1979: 1-71.

    [36] [36] ROMANENKO A I, CHEBANOVA G E, DROZHZHIN M V, et al. Thermoelectric properties and phase transition of doped single crystals and polycrystals of Bi2Te3[J]. J Am Ceram Soc, 2021, 104(12): 6242-6253.

    [37] [37] YING P, LI X, WANG Y, et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials[J]. Adv Funct Mater, 2017, 27(1): 1604145.

    [38] [38] JIANG B, QIU P, EIKELAND E, et al. Cu8GeSe6-based thermoelectric materials with an argyrodite structure[J]. J Mater Chem C, 2017, 5(4): 943-952.

    [39] [39] LIN S, LI W, LI S, et al. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons[J]. Joule, 2017, 1(4): 816-830.

    [40] [40] HOU Y H, CHANG L S. Optimization on the figure-of-merit of P-type Ba8Ga16Ge30 Type-I clathrate grown via the Bridgman method by fine tuning Ga/Ge ratio[J]. J Alloy Compd, 2018, 736: 108-114.

    [41] [41] CEN J Y, PALLIKARA I, SKELTON J M. Structural dynamics and thermal transport in bismuth chalcogenide alloys[J]. Chem Mater, 2021, 33(21): 8404-8417.

    [42] [42] LEE S, ESFARJANI K, LUO T F, et al. Resonant bonding leads to low lattice thermal conductivity[J]. Nat Commun, 2014, 5: 3525.

    [43] [43] WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric properties of bismuth telluride[J]. Adv Elect Materials, 2019, 5(6): 1800904.

    [44] [44] BROIDO D A, REINECKE T L. Lattice thermal conductivity of superlattice structures[J]. Phys Rev B, 2004, 70(8): 081310.

    [45] [45] KLOBES B, BESSAS D, JURANYI F, et al. Effect of nanocrystallinity on lattice dynamics in Bi2Te3 based thermoelectrics[J]. Phys Status Solidi RRL, 2015, 9(1): 57-61.

    [46] [46] TAMURA S I, TANAKA Y, MARIS H J. Phonon group velocity and thermal conduction in superlattices[J]. Phys Rev B, 1999, 60(4): 2627-2630.

    [47] [47] YANG B, CHEN G. Lattice dynamics study of anisotropic heat conduction in superlattices[J]. MRS Online Proc Libr, 2000, 626(1): 831-835.

    [48] [48] MIYAZAKI K, TANAKA S, NAGAI D. Heat conduction of a porous material[J]. J Heat Transf, 2012, 134(5): 1.

    [49] [49] BESSAS D, T-LLNER W, AABDIN Z, et al. Phonon spectroscopy in a Bi2Te3 nanowire array[J]. Nanoscale, 2013, 5(21): 10629-10635.

    [50] [50] ASHCROFT N W, MERMIN N D. Solid state physics thomson learning[M]. New York: Harcourt College Publishers, 1976.

    [51] [51] ZIMAN J M. Electrons and phonons: The theory of transport phenomena in solids[M]. Oxford: Clarendon Press, 2001.

    [52] [52] BULAT L P, PSHENAY-SEVERIN D A, OSVENSKII V B, et al. Calculation of the thermal conductivity of nanostructured Bi2Te3 with the real phonon spectrum taken into account[J]. Semiconductors, 2017, 51(6): 695-698.

    [53] [53] LI Y, ZHAO Q, WANG Y G, et al. Synthesis and characterization of Bi2Te3/polyaniline composites[J]. Mater Sci Semicond Process, 2011, 14(3-4): 219-222.

    [54] [54] SABERI Y, SAJJADI S A. A comprehensive review on the effects of doping process on the thermoelectric properties of Bi2Te3 based alloys[J]. J Alloys Compd, 2022, 904: 163918.

    [55] [55] DENG R G, SU X L, ZHENG Z, et al. Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries[J]. Sci Adv, 2018, 4(6): eaar5606.

    [56] [56] PARK K H, MOHAMED M, AKSAMIJA Z, et al. Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi2Te3 thin films[J]. J Appl Phys, 2015, 117(1): 015103.

    [57] [57] ZHOU C J, DUN C C, WANG Q, et al. Nanowires as building blocks to fabricate flexible thermoelectric fabric: The case of copper telluride nanowires[J]. ACS Appl Mater Interfaces, 2015, 7(38): 21015-21020.

    [58] [58] POUDEU P F P, GUéGUEN A, WU CHUN-I, et al. High figure of merit in nanostructured n-type KPbmSbTem+2 thermoelectric materials[J]. Chem Mater, 2010, 22(3): 1046-1053.

    [59] [59] SONI A, SHEN Y Q, YIN M, et al. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites[J]. Nano Lett, 2012, 12(8): 4305-4310.

    [60] [60] HSIN C L, WINGERT M, HUANG C W, et al. Phase transformation and thermoelectric properties of bismuth-telluride nanowires[J]. Nanoscale, 2013, 5(11): 4669-4672.

    [61] [61] WANG S Y, LI H, LU R M, et al. Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances[J]. Nanotechnology, 2013, 24(28): 285702.

    [62] [62] CHOUDHARY K K, SHARMA U, LODHI P D, et al. Size effect on thermoelectric properties of Bi2Te3 nanoparticles[C]//AIP Conference Proceedings. Bikaner, India. Author(s), 2018: 030275.

    [63] [63] POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.

    [64] [64] LAN Y C, POUDEL B, MA Y, et al. Structure study of bulk nanograined thermoelectric bismuth antimony telluride[J]. Nano Lett, 2009, 9(4): 1419-1422.

    [65] [65] MA Y, HAO Q, POUDEL B, et al. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks[J]. Nano Lett, 2008, 8(8): 2580-2584.

    [66] [66] XIE W J, HE J, KANG H J, et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites[J]. Nano Lett, 2010, 10(9): 3283-3289.

    [67] [67] TANG X F, XIE W J, LI H, et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure[J]. Appl Phys Lett, 2007, 90(1): 012102.

    [68] [68] KIM C, KIM D H, HAN Y S, et al. Development of bismuth tellurium selenide nanoparticles for thermoelectric applications via a chemical synthetic process[J]. Mater Res Bull, 2011, 46(3): 407-412.

    [69] [69] MI J L, LOCK N, SUN T, et al. Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure[J]. ACS Nano, 2010, 4(5): 2523-2530.

    [70] [70] ZHANG Y H, XU G Y, MI J L, et al. Hydrothermal synthesis and thermoelectric properties of nanostructured Bi0.5Sb1.5Te3 compounds[J]. Mater Res Bull, 2011, 46(5): 760-764.

    [72] [72] SCHEELE M, OESCHLER N, MEIER K, et al. Synthesis and thermoelectric characterization of Bi2Te3 Nanoparticles[J]. Adv Funct Mater, 2009, 19(21): 3476-3483.

    [73] [73] YOU H, BAE S H, KIM J, et al. Deposition of nanocrystalline Bi2Te3 films using a modified MOCVD system[J]. J Electron Mater, 2011, 40(5): 635-640.

    [74] [74] PERANIO N, EIBL O, NURNUS J. Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices[J]. J Appl Phys, 2006, 100(11): 114306.

    [75] [75] LU Z Y, LAYANI M, ZHAO X X, et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing[J]. Small, 2014, 10(17): 3551-3554.

    [76] [76] YU Z W, WANG X L, DU Y, et al. Fabrication and characterization of textured Bi2Te3 thermoelectric thin films prepared on glass substrates at room temperature using pulsed laser deposition[J]. J Cryst Growth, 2013, 362: 247-251.

    [77] [77] TANG R Z, WANG Z L, LI W, et al. Bi2Te3 thin films prepared by co-evaporation for CdTe thin film solar cells[J]. Sol Energy Mater Sol Cells, 2014, 121: 92-98.

    [78] [78] HICKS L D, DRESSELHAUS M S. Thermoelectric figure of merit of a one-dimensional conductor[J]. Phys Rev B, 1993, 47(24): 16631-16634.

    [79] [79] WU Z H, MU E Z, WANG Z C, et al. Bi2Te3 nanoplates’ selective growth morphology on different interfaces for enhancing thermoelectric properties[J]. Cryst Growth Des, 2019, 19(7): 3639-3646.

    [80] [80] ZHOU Y M, ZHAO L D. Promising thermoelectric bulk materials with 2D structures[J]. Adv Mater, 2017, 29(45): 1702676.

    [81] [81] SUN Z L, LIUFU S C, YAO Q, et al. Low temperature synthesis of Bi2Te3 nanosheets and thermal conductivity of nanosheet-contained composites[J]. Mater Chem Phys, 2010, 121(1-2): 138-141.

    [82] [82] LIU S, PENG N, BAI Y, et al. Fabrication of Cu-doped Bi2Te3 nanoplates and their thermoelectric properties[J]. J Electron Mater, 2017, 46(5): 2697-2704.

    [83] [83] XU Y B, REN Z M, REN W L, et al. Hydrothermal synthesis of single-crystalline Bi2Te3 nanoplates[J]. Mater Lett, 2008, 62(27): 4273-4276.

    [84] [84] HE H, HUANG D B, ZHANG X, et al. Characterization of hexagonal Bi2Te3 nanosheets prepared by solvothermal method[J]. Solid State Commun, 2012, 152(9): 810-815.

    [85] [85] LI C C, KONG F F, LIU C C, et al. Dual-functional aniline-assisted wet-chemical synthesis of bismuth telluride nanoplatelets and their thermoelectric performance[J]. Nanotechnology, 2017, 28(23): 235604.

    [86] [86] YANG L, CHEN Z G, HONG M, et al. Enhanced thermoelectric performance of nanostructured Bi2Te3 through significant phonon scattering[J]. ACS Appl Mater Interfaces, 2015, 7(42): 23694-23699.

    [87] [87] LEE E, KO J, KIM J Y, et al. Enhanced thermoelectric properties of Au nanodot-included Bi2Te3 nanotube composites[J]. J Mater Chem C, 2016, 4(6): 1313-1319.

    [88] [88] STAVILA V, ROBINSON D B, HEKMATY M A, et al. Wet-chemical synthesis and consolidation of stoichiometric bismuth telluride nanoparticles for improving the thermoelectric figure-of-merit[J]. ACS Appl Mater Interfaces, 2013, 5(14): 6678-6686.

    [89] [89] SON J S, CHOI M K, HAN M K, et al. N-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates[J]. Nano Lett, 2012, 12(2): 640-647.

    [90] [90] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.

    [91] [91] YU C X, ZHANG G, ZHANG Y W, et al. Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm[J]. Nano Energy, 2015, 17: 104-110.

    [92] [92] FANG T H, CHANG W J, WANG K Y, et al. Strain effect on the heat transport properties of bismuth telluride nanofilms with a hole[J]. Solid State Commun, 2018, 274: 1-4.

    [93] [93] LAI T Y, FANG T H, HUANG C C. Thermal conductivity variation of Bi2Te3 nanofilm with interfacial defects using molecular dynamics[J]. AIP Adv, 2019, 9(7): 075210.

    [94] [94] ROJO M M, ABAD B, MANZANO C V, et al. Thermal conductivity of Bi2Te3 nanowires: How size affects phonon scattering[J]. Nanoscale, 2017, 9(20): 6741-6747.

    [95] [95] JU H, KIM M, KIM J. A facile fabrication of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid structures and their improved thermoelectric performance[J]. Chem Eng J, 2015, 275: 102-112.

    [96] [96] YU C X, ZHANG G, PENG L M, et al. Thermal transport along Bi2Te3 topological insulator nanowires[J]. Appl Phys Lett, 2014, 105(2): 023903.

    [97] [97] DING D, WU Q A, GAO Y N, et al. PEDOT/CNT/Bi2Te3 coated porous thermoelectric yarns for textile based wearable thermoelectric generator[J]. Smart Mater Struct, 2023, 32(3): 035036.

    [98] [98] SHIN H S, JEON S G, YU J, et al. Twin-driven thermoelectric figure-of-merit enhancement of Bi2Te3 nanowires[J]. Nanoscale, 2014, 6(11): 6158-6165.

    [99] [99] YANG H R, FINEFROCK S W, ALBARRACIN CABALLERO J D, et al. Environmentally benign synthesis of ultrathin metal telluride nanowires[J]. J Am Chem Soc, 2014, 136(29): 10242-10245.

    [100] [100] ZHANG G Q, KIRK B, JAUREGUI L A, et al. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties[J]. Nano Lett, 2012, 12(1): 56-60.

    [101] [101] FINEFROCK S W, FANG H Y, YANG H R, et al. Large-scale solution-phase production of Bi2Te3 and PbTe nanowires using Te nanowire templates[J]. Nanoscale, 2014, 6(14): 7872-7876.

    [102] [102] LEE J, KIM Y, CAGNON L, et al. Power factor measurements of bismuth telluride nanowires grown by pulsed electrodeposition[J]. Phys Status Solidi-R, 2010, 4(1/2): 43-45.

    [103] [103] LI Z L, ZHENG S Q, HUANG T, et al. Rational design, high-yield synthesis, and low thermal conductivity of Te/Bi2Te3 core/shell heterostructure nanotube composites[J]. J Alloys Compd, 2014, 617: 247-252.

    [104] [104] ZHAO X B, JI X H, ZHANG Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites[J]. Appl Phys Lett, 2005, 86(6): 062111.

    [105] [105] LI Z L, ZHENG S Q, ZHANG Y Z, et al. High-yield synthesis, controllable evolution, and thermoelectric properties of Te/Bi2Te3 heterostructure nanostrings[J]. J Electron Mater, 2015, 44(6): 2061-2067.

    [106] [106] HONG M, CHEN Z G, YANG L, et al. Enhancing thermoelectric performance of Bi2Te3-based nanostructures through rational structure design[J]. Nanoscale, 2016, 8(16): 8681-8686.

    [107] [107] DRESSELHAUS M-, CHEN G, TANG M-, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater, 2007, 19(8): 1043-1053.

    [108] [108] CHEN X Z, LI F, DONG Y A, et al. Fabrication of micro/nano-structured Bi2Te3 Bulk materials with low thermal conductivity by spark plasma sintering[J]. J Am Ceram Soc, 2012, 95(7): 2096-2099.

    [109] [109] HOGAN T P, DOWNEY A, SHORT J, et al. Nanostructured thermoelectric materials and high-efficiency power-generation modules[J]. J Electron Mater, 2007, 36(7): 704-710.

    [110] [110] CHIRITESCU C, MORTENSEN C, CAHILL D G, et al. Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials[J]. J Appl Phys, 2009, 106(7): 073503.

    [111] [111] YU F R, XU B, ZHANG J J, et al. Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi2Te3 bulks[J]. Mater Res Bull, 2012, 47(6): 1432-1437.

    [112] [112] QIU B, RUAN X L. Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study[J]. Appl Phys Lett, 2010, 97(18): 183107.

    [113] [113] BROIDO D A, REINECKE T L. Thermoelectric figure of merit of quantum wire superlattices[J]. Appl Phys Lett, 1995, 67(1): 100-102.

    [114] [114] BIES W E, RADTKE R J, EHRENREICH H. Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices[J]. J Appl Phys, 2000, 88(3): 1498-1503.

    [115] [115] VENKATASUBRAMANIAN R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[J]. Phys Rev B, 2000, 61(4): 3091-3097.

    [116] [116] HICKS L D, DRESSELHAUS M S. Effect of quantum-well structures on the thermoelectric figure of merit[J]. Phys Rev B Condens Matter, 1993, 47(19): 12727-12731.

    [117] [117] BULMAN G E, THOMAS P M, KRUEGER G, et al. High heat flux, high temperature cooling of electronics with thermoelectric devices[J]. IEEE Electron Device Lett, 2014, 35(4): 476-478.

    [118] [118] BULMAN G, BARLETTA P, LEWIS J, et al. Superlattice-based thin-film thermoelectric modules with high cooling fluxes[J]. Nat Commun, 2016, 7: 10302.

    [119] [119] CHOWDHURY I, PRASHER R, LOFGREEN K, et al. On-chip cooling by superlattice-based thin-film thermoelectrics[J]. Nat Nanotechnol, 2009, 4(4): 235-238.

    [120] [120] HANSEN A L, DANKWORT T, WINKLER M, et al. Synthesis and thermal instability of high-quality Bi2Te3/Sb2Te3 superlattice thin film thermoelectrics[J]. Chem Mater, 2014, 26(22): 6518-6522.

    [121] [121] ESCHBACH M, LANIUS M, NIU C W, et al. Bi1Te1 is a dual topological insulator[J]. Nat Commun, 2017, 8: 14976.

    [122] [122] TEWELDEBRHAN D, GOYAL V, BALANDIN A A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals[J]. Nano Lett, 2010, 10(4): 1209-1218.

    [123] [123] TEWELDEBRHAN D, GOYAL V, RAHMAN M, et al. Atomically-thin crystalline films and ribbons of bismuth telluride[J]. Appl Phys Lett, 2010, 96(5): 053107.

    [124] [124] XU H, SONG Y X, GONG Q A, et al. Raman spectroscopy of epitaxial topological insulator Bi2Te3 thin films on GaN substrates[J]. Mod Phys Lett B, 2015, 29(15): 1550075.

    [125] [125] VENKATASUBRAMANIAN R, COLPITTS T, WATKO E, et al. MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications[J]. J Cryst Growth, 1997, 170(1-4): 817-821.

    [126] [126] VENKATASUBRAMANIAN R, COLPITTS T, O’QUINN B, et al. Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics[J]. Appl Phys Lett, 1999, 75(8): 1104-1106.

    [127] [127] IRVINE S J C, MULLIN J B, TUNNICLIFFE J. Photosensitisation: A stimulant for the low temperature growth of epitaxial HgTe[J]. J Cryst Growth, 1984, 68(1): 188-193.

    [128] [128] BHAT R. OMCVD growth of GaAs and AlGaAs using a solid as source[J]. J Electron Mater, 1985, 14(4): 433-449.

    [129] [129] SAMANTA M, PAL K, PAL P, et al. Localized vibrations of Bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-type BiSe[J]. J Am Chem Soc, 2018, 140(17): 5866-5872.

    [130] [130] SAMANTA M, PAL K, WAGHMARE U V, et al. Intrinsically low thermal conductivity and high carrier mobility in dual topological quantum material, n-type BiTe[J]. Angew Chem Int Ed, 2020, 59(12): 4822-4829.

    [131] [131] ZHANG Q H, AI X, WANG L J, et al. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure[J]. Adv Funct Mater, 2015, 25(6): 966-976.

    [132] [132] FALEEV S V, LéONARD F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions[J]. Phys Rev B, 2008, 77(21): 214304.

    [133] [133] HWANG S, KIM S I, AHN K, et al. Enhancing the thermoelectric properties of p-type bulk Bi-Sb-Te nanocomposites via solution-based metal nanoparticle decoration[J]. J Electron Mater, 2013, 42(7): 1411-1416.

    [134] [134] PENG J Y, FU L W, LIU Q Z, et al. A study of Yb0.2Co4Sb12-AgSbTe2 nanocomposites: Simultaneous enhancement of all three thermoelectric properties[J]. J Mater Chem A, 2014, 2(1): 73-79.

    [135] [135] ZHANG Q H, AI X, WANG W J, et al. Preparation of 1-D/3-D structured AgNWs/Bi2Te3 nanocomposites with enhanced thermoelectric properties[J]. Acta Mater, 2014, 73: 37-47.

    [136] [136] JIANG Q H, YANG J Y, XIN J W, et al. Carriers concentration tailoring and phonon scattering from n-type zinc oxide (ZnO) nanoinclusion in p- and n-type bismuth telluride (Bi2Te3): Leading to ultra low thermal conductivity and excellent thermoelectric properties[J]. J Alloys Compd, 2017, 694: 864-868.

    [137] [137] LI F, HUANG X Y, SUN Z L, et al. Enhanced thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering[J]. J Alloys Compd, 2011, 509(14): 4769-4773.

    [138] [138] KIM K T, KOO H Y, LEE G G, et al. Synthesis of alumina nanoparticle-embedded-bismuth telluride matrix thermoelectric composite powders[J]. Mater Lett, 2012, 82: 141-144.

    [139] [139] ZHAO W Y, LIU Z Y, SUN Z G, et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature, 2017, 549(7671): 247-251.

    [140] [140] LI C C, MA S F, WEI P, et al. Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys[J]. Energy Environ Sci, 2020, 13(2): 535-544.

    [141] [141] SUMITHRA S, TAKAS N J, NOLTING W M, et al. Effect of NiTe nanoinclusions on thermoelectric properties of Bi2Te3[J]. J Electron Mater, 2012, 41(6): 1401-1407.

    [142] [142] MA S F, LI C C, WEI P, et al. High-pressure synthesis and excellent thermoelectric performance of Ni/BiTeSe magnetic nanocomposites[J]. J Mater Chem A, 2020, 8(9): 4816-4826.

    [143] [143] DU B S, LAI X F, LIU Q L, et al. Spark plasma sintered bulk nanocomposites of Bi2Te2.7Se0.3 nanoplates incorporated Ni nanoparticles with enhanced thermoelectric performance[J]. ACS Appl Mater Interfaces, 2019, 11(35): 31816-31823.

    [144] [144] WU X K, WANG Z Y, LIU Y, et al. Enhanced performance of Bi2Te3-based thermoelectric materials by incorporating Bi2Fe4O9 magnetic nanoparticles[J]. J Alloys Compd, 2022, 904: 163933.

    [145] [145] WU H J, CHEN B Y, CHENG H Y. The p-n conduction type transition in Ge-incorporated Bi2Te3 thermoelectric materials[J]. Acta Mater, 2017, 122: 120-129.

    [146] [146] SINGHA P, DAS S, KULBACHINSKII V A, et al. Evidence of improvement in thermoelectric parameters of n-type Bi2Te3/graphite nanocomposite[J]. J Appl Phys, 2021, 129(5): 055108.

    [147] [147] AHMAD K, WAN C, AL-ESHAIKH M A, et al. Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites[J]. Appl Surf Sci, 2019, 474: 2-8.

    [148] [148] KUMAR S, CHAUDHARY D, KUMAR DHAWAN P, et al. Bi2Te3-MWCNT nanocomposite: An efficient thermoelectric material[J]. Ceram Int, 2017, 43(17): 14976-14982.

    [149] [149] KUMAR S, CHAUDHARY D, KHARE N. Enhanced thermoelectric figure of merit in Bi2Te3-CNT-PEDOT nanocomposite by introducing conducting interfaces in Bi2Te3 nanostructures[J]. APL Mater, 2019, 7(8): 081123.

    [150] [150] LI S K, FAN T J, LIU X R, et al. Graphene quantum dots embedded in Bi2Te3 nanosheets to enhance thermoelectric performance[J]. ACS Appl Mater Interfaces, 2017, 9(4): 3677-3685.

    [151] [151] KIM K T, CHOI S Y, SHIN E H, et al. The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite[J]. Carbon, 2013, 52: 541-549.

    [152] [152] KIM C, BAEK J Y, LOPEZ D H, et al. Decoupling effect of electrical and thermal properties of Bi2Te3-polypyrrole hybrid material causing remarkable enhancement in thermoelectric performance[J]. J Ind Eng Chem, 2019, 71: 119-126.

    [153] [153] KIM C, LOPEZ D H. Effects of the interface between inorganic and organic components in a Bi2Te3-polypyrrole bulk composite on its thermoelectric performance[J]. Materials, 2021, 14(11): 3080.

    [154] [154] THONGKHAM W, LERTSATITTHANAKORN C, JIRAMITMONGKON K, et al. Self-assembled three-dimensional Bi2Te3 nanowire-PEDOT: PSS hybrid nanofilm network for ubiquitous thermoelectrics[J]. ACS Appl Mater Interfaces, 2019, 11(6): 6624-6633.

    [155] [155] WU F, SONG H Z, JIA J F, et al. Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy[J]. Prog Nat Sci Mater Int, 2013, 23(4): 408-412.

    [156] [156] SINGH N K, PANDEY J, ACHARYA S, et al. Charge carriers modulation and thermoelectric performance of intrinsically p-type Bi2Te3 by Ge doping[J]. J Alloys Compd, 2018, 746: 350-355.

    [157] [157] WU F, WANG W, HU X, et al. Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing[J]. Prog Nat Sci Mater Int, 2017, 27(2): 203-207.

    [158] [158] MALIK I, SRIVASTAVA T, SURTHI K K, et al. Enhanced thermoelectric performance of n-type Bi2Te3 alloyed with low cost and highly abundant sulfur[J]. Mater Chem Phys, 2020, 255: 123598.

    [159] [159] PARK M S, KOO H Y, PARK Y H, et al. Effects of milling duration on the thermoelectric properties of n-type Bi2Te2.7Se0.3[J]. Arch Metall Mater, 2023: 591-595.

    [160] [160] TANG N A, ZHOU H Y, MU X, et al. Nonlinear response behavior of Fe/Bi2Te2.7Se0.3 artificially tilted multilayer thermoelectric devices to thermal contact[J]. Appl Phys Lett, 2018, 113(1): 013903.

    [161] [161] WANG Y A, LIU W D, GAO H, et al. High porosity in nanostructured n-type Bi2Te3 obtaining ultralow lattice thermal conductivity[J]. ACS Appl Mater Interfaces, 2019, 11(34): 31237-31244.

    [162] [162] LIU S A, PENG N, ZHOU C J, et al. Fabrication of Bi2Te3-xSex nanowires with tunable chemical compositions and enhanced thermoelectric properties[J]. Nanotechnology, 2017, 28(8): 085601.

    [163] [163] KIM H S, HONG S J. Thermoelectric properties of n-type 95%Bi2Te3-5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering[J]. J Alloys Compd, 2014, 586: S428-S431.

    [164] [164] JIANG J, CHEN L D, BAI S Q, et al. Thermoelectric performance of p-type Bi-Sb-Te materials prepared by spark plasma sintering[J]. J Alloys Compd, 2005, 390(1-2): 208-211.

    [165] [165] AN J, HAN M K, KIM S J. Synthesis of heavily Cu-doped Bi2Te3 nanoparticles and their thermoelectric properties[J]. J Solid State Chem, 2019, 270: 407-412.

    [166] [166] IVANOV O, YAPRINTSEV M, DANSHINA E. Transverse magnetoresistance peculiarities of thermoelectric Lu-doped Bi2Te3 compound due to strong electrical disorder[J]. J Rare Earths, 2019, 37(3): 292-298.

    [167] [167] YANG J J, WU F, ZHU Z, et al. Thermoelectrical properties of lutetium-doped Bi2Te3 bulk samples prepared from flower-like nanopowders[J]. J Alloys Compd, 2015, 619: 401-405.

    [168] [168] BYUN S, CHA J, ZHOU C J, et al. Unusual n-type thermoelectric properties of Bi2Te3 doped with divalent alkali earth metals[J]. J Solid State Chem, 2019, 269: 396-400.

    [169] [169] KIM Y H, KIM Y, KIM H S, et al. Concentration-dependent excess Cu doping behavior and influence on thermoelectric properties in Bi2Te3[J]. Int J Energy Res, 2022, 46(3): 3707-3713.

    [170] [170] CHEN Y Y, SHI Q K, ZHONG Y, et al. Ga intercalation in van der waals layers for advancing p-type Bi2Te3-based thermoelectrics[J]. Chinese Physics B, 2023, 32(6): 067201.

    [171] [171] ZHANG F, QI X, HE M, et al. Contrasting roles of Bi-doping and Bi2Te3 alloying on the thermoelectric performance of SnTe[J]. Inorg Chem Front, 2022, 9(21): 5562-5571.

    Tools

    Get Citation

    Copy Citation Text

    LIU Zhiyuan, GUAN Xicheng, LI Zhou, MA Ni, MA Junjie, BA Qian, XIA Ailin, JIN Chuangui. Phonon Engineering in Bi2Te3-Based Thermoelectric Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 203

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 16, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Zhiyuan LIU (zhiyuanliu826@ahut.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics