Semiconductor Optoelectronics, Volume. 45, Issue 6, 931(2024)
Dense Crowd Pose Estimation Algorithm for In-layer Adjustment Feature Pyramid
[1] [1] Gler R A, Neverova N, Kokkinos I. Densepose: Dense human pose estimation in the wild [C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7297-7306.
[2] [2] Papaioannidis C, Mademlis I, Pitas I. Fast CNN-based single-person 2D human pose estimation for autonomous systems [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 33(3): 1262-1275.
[3] [3] Tong M L, Han H, Zhu W. Shared latent dynamical structure for three-dimensional human pose estimation [J]. Science China Information Sciences, 2011, 54: 1375-1382.
[4] [4] Wang H, Shi Q, Shan B. Three-dimensional human pose estimation with spatial-temporal interaction enhancement transformer [J]. Applied Sciences, 2023, 13(8): 5093.
[5] [5] Nguyen T D, Kresovic M. A survey of top-down approaches for human pose estimation [J]. arXiv preprint arXiv: 2202.02656, 2022.
[6] [6] Chan Y, Wang Z, Peng Y, et al. Cascaded pyramid network for multi-person pose estimation [C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7103-7112.
[7] [7] Carreira J, Zakharov D. PoseNet: A convolutional network for real-time 6-DOF camera relocalization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(9): 1881-1893.
[8] [8] Yin R, Yin J. Global relation modeling and refinement for bottom-up human pose estimation [J]. arXiv preprint arXiv: 2303.14888, 2023.
[9] [9] Maji D, Nagori S, Mathew M, et al. Yolo-pose: Enhancing Yolo for multi person pose estimation using object keypoint similarity loss [C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2637-2646.
[10] [10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection [C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[11] [11] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection [C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[12] [12] Quan Y, Zhang D, Zhang L, et al. Centralized feature pyramid for object detection [J]. IEEE Trans. on Image Processing, 2023, 32: 4341-4354.
[13] [13] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection [C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[15] [15] Toshev A, Szegedy C. Deeppose: Human pose estimation via deep neural networks [C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2014: 1653-1660.
[20] [20] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[21] [21] Ghiasi G, Lin T Y, Le Q V. Nas-fpn: Learning scalable feature pyramid architecture for object detection [C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 7036-7045.
[22] [22] Xia Z, Pan X, Song S, et al. Vision transformer with deformable attention [C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2022: 4794-4803.
[23] [23] Liu W, Lu H, Fu H, et al. Learning to upsample by learning to sample [C]// Proc. of the IEEE/CVF Inter. Conf. on Computer Vision, 2023: 6027-6037.
[24] [24] Zhang Y, Ye M, Zhu G, et al. FFCA-YOLO for small object detection in remote sensing images [J]. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62: 1-15.
[25] [25] Gao Z, Hidalgo G, Simon T, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186.
[26] [26] Osokin D. Real-time 2D multi-person pose estimation on CPU: Lightweight openpose [C]// International Conference on Pattern Recognition Applications and Meth, 2019: 53996245.
[27] [27] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation [C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 5686-5696.
[28] [28] Cheng B W, Xiao B, Wang J D, et al. HigherHRNet: Scale-aware representation learning for bottom-up human pose estimation [C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020: 5386-5395.
Get Citation
Copy Citation Text
GU Xuejing, GUO Zhibin. Dense Crowd Pose Estimation Algorithm for In-layer Adjustment Feature Pyramid[J]. Semiconductor Optoelectronics, 2024, 45(6): 931
Category:
Received: Jul. 31, 2024
Accepted: Feb. 28, 2025
Published Online: Feb. 28, 2025
The Author Email: