Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1006(2024)

Research Progress on Sesquioxide Laser Ceramics

LI Qing1,2, WANG Jun2、*, MA Jie2, LIU Peng2, SHEN Deyuan2, ZHANG Jian3, YU Haohai1, ZHANG Huaijin1, and TANG Dingyuan4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(132)

    [1] [1] COBLE R L. Transparent alumina and method of preparation [P]. US Patent, 3026210. 1962-3-20.

    [2] [2] SANGHERA J, KIM W, VILLALOBOS G, et al. Ceramic laser materials[J]. Materials, 2012, 5(2): 258-277.

    [3] [3] YIN D L, WANG J, WANG Y, et al. Fabrication of Er: Y2O3 transparent ceramics for 2.7?μm mid-infrared solid-state lasers[J]. J Eur Ceram Soc, 2020, 40(2): 444-448.

    [4] [4] WANG J, MA J, ZHANG J, et al. Yb: Y2O3 transparent ceramics processed with hot isostatic pressing[J]. Opt Mater, 2017, 71: 117-120.

    [5] [5] An ISO 9001:2008 Certified Company [EB/OL]. [2023-08-29]. http://www.surmet.com/technology/alon-optical-ceramics/index.php

    [6] [6] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nat Photonics, 2008, 2(12): 721-727.

    [7] [7] EILERS H. Fabrication, optical transmittance, and hardness of IR-transparent ceramics made from nanophase yttria[J]. J Eur Ceram Soc, 2007, 27(16): 4711-4717.

    [8] [8] HARRIS D C. Durable 3-5 μm transmitting infrared window materials[J]. Infrared Phys Technol, 1998, 39(4): 185-201.

    [9] [9] NIKL M, LAGUTA V V, VEDDA A. Complex oxide scintillators: Material defects and scintillation performance[J]. Phys Status Solidi B, 2008, 245(9): 1701-1722.

    [10] [10] HATCH S E, PARSONS W F, WEAGLEY R J. Hot-pressed polycrystalline CaF2: Dy2+ laser[J]. Appl Phys Lett, 1964, 5(8): 153-154.

    [11] [11] GRESKOVICH C, CHERNOCH J P. Polycrystalline ceramic lasers[J]. J Appl Phys, 1973, 44(10): 4599-4606.

    [12] [12] IKESUE A, KINOSHITA T, KAMATA K, et al. ChemInform abstract: Fabrication and optical properties of high-performance polycrystalline Nd: YAG ceramics for solid-state lasers[J]. ChemInform, 1995, 26(35): 1033-1040.

    [13] [13] LU J R, UEDA K I, YAGI H, et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—A new generation of solid state laser and optical materials[J]. J Alloys Compd, 2002, 341(1/2): 220-225.

    [15] [15] PAN Yubai, XU Jun, WU Yusong, et al. J Inorg Mater, 2006, 21(5): 1278-1280.

    [16] [16] MCNAUGHT S J, KOMINE H, WEISS S B, et al. 100 kW coherently combined slab MOPAs[C]//2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference. Baltimore, MD, USA. IEEE, 2009: 1-2.

    [18] [18] LEI Xiaoli, SUN Ling, LIU Yang, et al. Laser Infrared, 2011, 41(9): 948-952.

    [19] [19] SERIVALSATIT K, KOKUOZ B, YAZGAN-KOKUOZ B, et al. Synthesis, processing, and properties of submicrometer-grained highly transparent yttria ceramics[J]. J Am Ceram Soc, 2010, 93(5): 1320-1325.

    [20] [20] YIN D L, MA J E, LIU P,et al. Submicron-grained Yb: Lu2O3 transparent ceramics with lasing quality[J]. J Am Ceram Soc, 2019, 102(5): 2587-2592.

    [21] [21] PETERS V, BOLZ A, PETERMANN K, et al. Growth of high-melting sesquioxides by the heat exchanger method[J]. J Cryst Growth, 2002, 237-239: 879-883.

    [22] [22] LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics[J]. J Eur Ceram Soc, 2021, 41(7): 3895-3910.

    [23] [23] WANG Y, WANG J, NI M, et al. Exploring the evolution of pores in HIPed Y2O3 transparent ceramics[J]. Ceram Int, 2021, 47(8): 11637-11643.

    [24] [24] SANGHERA J, BAYYA S, VILLALOBOS G, et al. Transparent ceramics for high-energy laser systems[J]. Opt Mater, 2011, 33(3): 511-518.

    [25] [25] KIM W, BAKER C, VILLALOBOS G, et al. Ceramic materials for high power solid state lasers[C]//SPIE LASE. Proc SPIE 8235, Solid State Lasers XXI: Technology and Devices, San Francisco, California, USA. 2012, 8235: 44-54.

    [26] [26] REN C Y, HUANG W W, XIE H B, et al. High power and efficient operation of a Ho: Y2O3 ceramic laser with over 210 W of output power at 2.1 μm[J]. Opt Express, 2022, 30(17): 31407-31414.

    [27] [27] ESSER S, R?HRER C, XU X D, et al. Ceramic Yb: Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Opt Lett, 2021, 46(24): 6063-6066.

    [28] [28] WANG Y C, JING W, LOIKO P, et al. Sub-10 optical-cycle passively mode-locked Tm: (Lu2/3Sc1/3)2O3 ceramic laser at 2 μm[J]. Opt Express, 2018, 26(8): 10299-10304.

    [29] [29] TOCI G, PIRRI A, PATRIZI B, et al. High efficiency emission of a laser based on Yb-doped (Lu, Y)2O3 ceramic[J]. Opt Mater, 2018, 83: 182-186.

    [30] [30] XIE W F, IVANOV M, YAVETSKIY R, et al. Eu: Lu2O3 transparent ceramics fabricated by vacuum sintering of co-precipitated nanopowders[J]. Opt Mater, 2018, 86: 550-561.

    [31] [31] ALOMBERT-GOGET G, GUYOT Y, GUZIK M, et al. Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: structural, thermal conductivity and spectroscopic characterization[J]. Opt Mater, 2015, 41: 3-11.

    [32] [32] WANG J, ZHANG J, LUO D W, et al. Densification and microstructural evolution of yttria transparent ceramics:The effect of ball milling conditions[J]. J Eur Ceram Soc, 2015, 35(3): 1011-1019.

    [33] [33] OH H M, PARK Y J, KIM H N, et al. Effect of powder milling routes on the sinterability and optical properties of transparent Y2O3 ceramics[J]. J Eur Ceram Soc, 2021, 41(1): 775-780.

    [34] [34] OH H M, PARK Y J, KIM H N, et al. Effect of milling ball size on the densification and optical properties of transparent Y2O3 ceramics[J]. Ceram Int, 2021, 47(4): 4681-4687.

    [35] [35] IKEGAMI T, MORI T, YAJIMA Y, et al. Fabrication of transparent yttria ceramics through the synthesis of ytttrium hydroxide at low temperature and doping by sulfate ions[J]. J Ceram Soc Japan, 1999, 107(1243): 297-299.

    [36] [36] SUBRAMANIAN R, SHANKAR P, KAVITHAA S, et al. Synthesis of nanocrystalline yttria by sol-gel method[J]. Mater Lett, 2001, 48(6): 342-346.

    [38] [38] LI Jian, DAI Yuhang, ZHU Zhongli. J Chin Ceram Soc, 2017, 45(10): 1474-1480.

    [39] [39] LI J G, IKEGAMI T, MORI T. Fabrication of transparent Sc2O3 ceramics with powders thermally pyrolyzed from sulfate[J]. J Mater Res, 2003, 18(8): 1816-1822.

    [40] [40] SAITO N, MATSUDA S I, IKEGAMI T. Fabrication of transparent yttria ceramics at low temperature using carbonate-derived powder[J]. J Am Ceram Soc, 2005, 81(8): 2023-2028.

    [41] [41] FUKABORI A, SEKITA M, IKEGAMI T, et al. Induced emission cross section of a possible laser line in Nd: Y2O3 ceramics at 1.095μm[J]. J Appl Phys, 2007, 101(4): 043112.

    [43] [43] WEN Lei, SUN Xudong. J Chin Rare Earth Soc, 2003, 21(2): 166-169.

    [45] [45] WEN Lei, SUN Xudong, QI Lu, et al. J Inorg Mater, 2006, 21(3): 539-546.

    [46] [46] YIN D L, WANG J, LIU P, et al. Yttria nanopowders with low degree of aggregation by a spray precipitation method[J]. Ceram Int, 2018, 44(16): 20472-20477.

    [47] [47] YIN D L, WANG J, LIU P, et al. Fabrication and microstructural characterizations of lasing grade Nd: Y2O3 ceramics[J]. J Am Ceram Soc, 2019, 102(12): 7462-7468.

    [48] [48] JIN L L, MAO X J, WANG S W, et al. Optimization of the rheological properties of yttria suspensions[J]. Ceram Int, 2009, 35(2): 925-927.

    [49] [49] JIN L L, ZHOU G H, SHIMAI S, et al. ZrO2-doped Y2O3 transparent ceramics via slip casting and vacuum sintering[J]. J Eur Ceram Soc, 2010, 30(10): 2139-2143.

    [50] [50] BOULESTEIX R, EPHERRE R, NOYAU S, et al. Highly transparent Nd: Lu2O3 ceramics obtained by coupling slip-casting and spark plasma sintering[J]. Scr Mater, 2014, 75: 54-57.

    [51] [51] SUN Y, SHIMAI S, PENG X, et al. Fabrication of transparent Y2O3 ceramics via aqueous gelcasting[J]. Ceram Int, 2014, 40(6): 8841-8845.

    [52] [52] ZHANG J, AN L Q, LIU M, et al. Sintering of Yb3+: Y2O3 transparent ceramics in hydrogen atmosphere[J]. J Eur Ceram Soc, 2009, 29(2): 305-309.

    [53] [53] HUANG Y H, JIANG D L, ZHANG J X, et al. Sintering of transparent yttria ceramics in oxygen atmosphere[J]. J Am Ceram Soc, 2010, 93(10): 2964-2967.

    [54] [54] GAZZA G E, RODERICK D, LEVINE B. Transparent Sc2O3 by hot-pressing[J]. J Mater Sci, 1971, 6(8): 1137-1139.

    [55] [55] BALABANOV S, PERMIN D, EVSTROPOV T, et al. Hot pressing of Yb: Y2O3 laser ceramics with LiF sintering aid[J]. Opt Mater, 2021, 119: 111349.

    [56] [56] PERMIN D A, BALABANOV S S, SNETKOV I L, et al. Hot pressing of Yb: Sc2O3 laser ceramics with LiF sintering aid[J]. Opt Mater, 2020, 100: 109701.

    [57] [57] SANGHERA J, FRANTZ J, KIM W, et al. 10% Yb3+-Lu2O3 ceramic laser with 74% efficiency[J]. Opt Lett, 2011, 36(4): 576-578.

    [58] [58] IKESUE A, KAMATA K, YOSHIDA K. Synthesis of transparent Nd-doped HfO2-Y2O3 ceramics using HIP[J]. J Am Ceram Soc, 1996, 79(2): 359-364.

    [59] [59] LI Q, WANG J, MA J E, et al. Fabrication of high-efficiency Yb: Y2O3 laser ceramics without photodarkening[J]. J Am Ceram Soc, 2022, 105(5): 3375-3381.

    [60] [60] LI Q, WANG Y, WANG J, et al. High transparency Pr: Y2O3 ceramics: A promising gain medium for red emission solid-state lasers[J]. J Adv Ceram, 2022, 11(6): 874-881.

    [61] [61] XU C W, YANG C D, ZHANG H, et al. Efficient laser operation based on transparent Nd: Lu2O3 ceramic fabricated by spark plasma sintering[J]. Opt Express, 2016, 24(18): 20571-20579.

    [62] [62] HU Z W, XU X D, WANG J, et al. Spark plasma sintering of Sm3+ doped Y2O3 transparent ceramics for visible light lasers[J]. Ceram Int, 2017, 43(15): 12057-12060.

    [63] [63] MARIA JOSE S, MATHEW C T, K THOMAS J. Fabrication of dysprosium doped Y2O3 infrared transparent ceramic materials by a microwave sintering technique[J]. Mater Today Proc, 2020, 24: 2383-2393.

    [64] [64] WANG J, NING K J, ZHANG J A, et al. Rapid rate sintering of yttria transparent ceramics[J]. J Am Ceram Soc, 2016, 99(6): 1935-1942.

    [65] [65] CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168-171.

    [66] [66] LEFEVER R A, MATSKO J. Transparent yttrium oxide ceramics[J]. Mater Res Bull, 1967, 2(9): 865-869.

    [67] [67] MARDER R, CHAIM R, CHEVALLIER G, et al. Effect of 1 wt% LiF additive on the densification of nanocrystalline Y2O3 ceramics by spark plasma sintering[J]. J Eur Ceram Soc, 2011, 31(6): 1057-1066.

    [68] [68] KODO M, SOGA K, YOSHIDA H, et al. Doping effect of divalent cations on sintering of polycrystalline yttria[J]. J Eur Ceram Soc, 2010, 30(13): 2741-2747.

    [69] [69] SAITO N, HANEDA H, SAKAGUCHI I, et al. Effect of the calcium dopant on oxide ion diffusion in yttria ceramics[J]. J Mater Res, 2001, 16(8): 2362-2368.

    [70] [70] YIN D L, WANG J, NI M, et al. Fabrication of highly transparent Y2O3 ceramics with CaO as sintering aid[J]. Materials, 2021, 14(2): 444.

    [72] [72] YANG Qiuhong, LU Shenzhou, ZHANG Haojia, et al. J Chin Ceram Soc, 2010, 38(6): 1098-1101.

    [73] [73] RHODES W H. Controlled transient solid second-phase sintering of yttria[J]. J Am Ceram Soc, 1981, 64(1): 13-19.

    [75] [75] ZHANG Hongwei, YANG Qiuhong, XU Jun. J Chin Ceram Soc, 2006, 34(6): 675-678.

    [76] [76] YANG Q H, DING J, ZHANG H W, et al. Investigation of the spectroscopic properties of Yb3+-doped yttrium lanthanum oxide transparent ceramic[J]. Opt Commun, 2007, 273(1): 238-241.

    [77] [77] YANG Q H, LU S Z, ZHANG B, et al. Preparation and laser performance of Nd-doped yttrium lanthanum oxide transparent ceramic[J]. Opt Mater, 2011, 33(5): 692-694.

    [78] [78] ZHANG L, YANG J, YU H Y, et al. High performance of La-doped Y2O3 transparent ceramics[J]. J Adv Ceram, 2020, 9(4): 493-502.

    [79] [79] CHEN P L, CHEN I W. Grain boundary mobility in Y2O3: Defect mechanism and dopant effects[J]. J Am Ceram Soc, 1996, 79(7): 1801-1809.

    [80] [80] JORGENSEN P J, ANDERSON R C. Grain-boundary segregation and final-stage sintering of Y2O3[J]. J Am Ceram Soc, 1967, 50(11): 553-558.

    [81] [81] HOU X R, ZHOU S M, LI W J, et al. Study on the effect and mechanism of zirconia on the sinterability of yttria transparent ceramic[J]. J Eur Ceram Soc, 2010, 30(15): 3125-3129.

    [82] [82] ZHANG C, WANG X L, LIANG L X, et al. Vacuum sintering of Yb2O3 transparent ceramics: Effect of ZrO2 concentration on structural and optical properties[J]. J Alloys Compd, 2022, 907: 164454.

    [83] [83] NING K J, WANG J, LUO D W, et al. New double-sintering aid for fabrication of highly transparent ytterbium-doped yttria ceramics[J]. J Eur Ceram Soc, 2016, 36(1): 253-256.

    [85] [85] JING Wei, HUANG Hui, YU Shengquan, et al. ZrO2-LiF-codoped vacuum sintering method for lutetium oxide transparent ceramic. CN105236980A. 2016-01-13.

    [86] [86] WANG J, YIN D L, MA J, et al. Pump laser induced photodarkening in ZrO2-doped Yb: Y2O3 laser ceramics[J]. J Eur Ceram Soc, 2019, 39(2/3): 635-640.

    [87] [87] ZHU H Y, ZHANG Y C, YIN D L, et al. Highly efficient CW operation of a diode pumped Nd: Y2O3 ceramic laser[J]. Opt Mater Express, 2018, 8(11): 3518.

    [88] [88] LU J R, TAKAICHI K, UEMATSU T, et al. Yb3+: Y2O3 ceramics: a novel solid-state laser material[J]. Jpn J Appl Phys, 2002, 41(Part 2, No. 12A): L1373-L1375.

    [89] [89] YUE F X, JAMBUNATHAN V, PAUL DAVID S, et al. Spectroscopy and diode-pumped continuous-wave laser operation of Tm: Y2O3 transparent ceramic at cryogenic temperatures[J]. Appl Phys B, 2020, 126(3): 1-8.

    [90] [90] WANG J, ZHAO Y G, YIN D L, et al. Holmium doped yttria transparent ceramics for 2-μm solid state lasers[J]. J Eur Ceram Soc, 2018, 38(4): 1986-1989.

    [91] [91] XIE H B, ZHANG J N, WANG F, et al. High-power 1640 nm Er: Y2O3 ceramic laser at room temperature[J]. Opt Lett, 2022, 47(2): 246-248.

    [92] [92] BOULON G. Why so deep research on Yb3+-doped optical inorganic materials?[J]. J Alloys Compd, 2008, 451(1/2): 1-11.

    [93] [93] AMAMI J, HRENIAK D, GUYOT Y, et al. Size-effect on concentration quenching in Yb3+-doped Y3Al5O12 nano-crystals[J]. J Lumin, 2010, 130(4): 603-610.

    [94] [94] KONG J, TANG D Y, SHEN D Y, et al. Diode-pumped Yb: Y2O3 ceramic laser[C]//Photonics Asia. Proc SPIE 4914, High-Power Lasers and Applications II, Shanghai, China. 2002, 4914: 74-81.

    [95] [95] KONG J, LU J, TAKAICHI K, et al. Diode-pumped Yb: Y2O3 ceramic laser[J]. Appl Phys Lett, 2003, 82(16): 2556-2558.

    [96] [96] LU J, BISSON J F, TAKAICHI K, et al. Yb3+: Sc2O3 ceramic laser[J]. Appl Phys Lett, 2003, 83(6): 1101-1103.

    [97] [97] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3: Yb3+ ceramics—A novel gain material for high-power solid-state lasers[J]. Phys Stat Sol (a), 2005, 202(1): R1-R3.

    [98] [98] KONG J, TANG D Y, ZHAO B, et al. 9.2 W diode-end-pumped Yb: Y2O3 ceramic laser[J]. Appl Phys Lett, 2005, 86(16): 161116.

    [99] [99] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and laser operation of Yb: Lu2O3 transparent ceramics from co-precipitated nano-powders[J]. J Am Ceram Soc, 2019, 102(12): 7491-7499.

    [100] [100] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Continuous wave and mode-locked Yb3+: Y2O3 ceramic thin disk laser[J]. Opt Express, 2012, 20(10): 10847-10852.

    [101] [101] KITAJIMA S, NAKAO H, SHIRAKAWA A, et al. CW performance and temperature observation of Yb: Lu2O3 ceramic thin-disk laser[C]//Laser Congress 2017 (ASSL, LAC). Nagoya, Aichi. Washington, D.C.: OSA, 2017.

    [102] [102] LIU W, JIN L L, WANG S W. Preparation of ZrO2-doped Nd3+: Y2O3 transparent ceramic and the corresponding characteristic of luminescence[J]. Mater Chem Phys, 2019, 236: 121835.

    [103] [103] HAO L Z, WU K, CONG H J, et al. Spectroscopy and laser performance of Nd: Lu2O3 crystal[J]. Opt Express, 2011, 19(18): 17774-17779.

    [104] [104] WALSH B M, MCMAHON J M, EDWARDS W C, et al. Spectroscopic characterization of Nd: Y2O3: application toward a differential absorption lidar system for remote sensing of ozone[J]. J Opt Soc Am B, 2002, 19(12): 2893-2903.

    [105] [105] LU J R, LU J H, MURAI T, et al. Nd3+: Y2O3 ceramic laser[J]. Jpn J Appl Phys, 2001, 40(12A): L1277.

    [106] [106] LU J, TAKAICHI K, UEMATSU T, et al. Promising ceramic laser material: Highly transparent Nd3+: Lu2O3 ceramic[J]. Appl Phys Lett, 2002, 81(23): 4324-4326.

    [107] [107] AN L Q, ITO A, ZHANG J A, et al. Highly transparent Nd3+: Lu2O3 produced by spark plasma sintering and its laser oscillation[J]. Opt Mater Express, 2014, 4(7): 1420.

    [108] [108] TOCI G, VANNINI M, CIOFINI M, et al. Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the spark plasma sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method[J]. Opt Mater, 2015, 41: 12-16.

    [109] [109] SATTAYAPORN S, AKA G, LOISEAU P, et al. Optical spectroscopic properties, 0.946 and 1.074 μm laser performances of Nd3+-doped Y2O3 transparent ceramics[J]. J Alloys Compd, 2017, 711: 446-454.

    [110] [110] WANG H, HUANG H T, LIU P A, et al. Diode-pumped continuous-wave and Q-switched Tm: Y2O3 ceramic laser around 2050 nm[J]. Opt Mater Express, 2017, 7(2): 296.

    [111] [111] HUANG H T, WANG H, SHEN D Y. VBG-locked continuous-wave and passively Q-switched Tm: Y2O3 ceramic laser at 2.1 μm[J]. Opt Mater Express, OME, 2017, 7(9): 3147-3154.

    [112] [112] HUANG W W, WANG F, SHEN D Y, et al. High efficiency operation of Tm: Y2O3 ceramic laser in-band pumped at 1620 nm[C]//SPIE/COS Photonics Asia. Proc SPIE 11890, Advanced Lasers, High-Power Lasers, and Applications XII, Nantong, Jiangsu, China. 2021, 11890: 46-50.

    [113] [113] ANTIPOV O L, NOVIKOV A A, ZAKHAROV N G, et al. Efficient 2.1-μm lasers based on Tm3+: Lu2O3 ceramics pumped by 800-nm laser diodes[J]. Phys Status Solidi C, 2013, 10(6): 969-973.

    [114] [114] ANTIPOV O, NOVIKOV A, LARIN S, et al. Highly efficient 2 μm CW and Q-switched Tm3+: Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm[J]. Opt Lett, 2016, 41(10): 2298-2301.

    [115] [115] HAO Z D, ZHANG L L, WANG Y P, et al. 11 W continuous-wave laser operation at 209 μm in Tm: Lu16Sc04O3 mixed sesquioxide ceramics pumped by a 796 nm laser diode[J]. Opt Mater Express, 2018, 8(11): 3615.

    [116] [116] NEWBURGH G A, WORD-DANIELS A, MICHAEL A, et al. Resonantly diode-pumped Ho3+: Y2O3 ceramic 2.1 μm laser[J]. Opt Express, 2011, 19(4): 3604-3611.

    [117] [117] KIM W, BAKER C, BOWMAN S, et al. Laser oscillation from Ho3+ doped Lu2O3 ceramics[J]. Opt Mater Express, OME, 2013, 3(7): 913-919.

    [118] [118] WANG F, TANG J W, LI E H, et al. Ho3+: Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Opt Lett, 2019, 44(24): 5933-5936.

    [119] [119] LI J F, HUDSON D D, JACKSON S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Opt Lett, 2011, 36(18): 3642-3644.

    [120] [120] GODARD A. Infrared (2-12 μm) solid-state laser sources: A review[J]. Comptes Rendus Phys, 2007, 8(10): 1100-1128.

    [121] [121] MA J E, QIN Z P, XIE G Q, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region[J]. Appl Phys Rev, 2019, 6(2): 021317.

    [122] [122] SANAMYAN T, SIMMONS J, DUBINSKII M. Efficient cryo-cooled 2.7 μm Er3+: Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Phys Lett, 2010, 7(8): 569-572.

    [123] [123] SANAMYAN T, SIMMONS J, DUBINSKII M. Efficient cryo-cooled 2.7 μm Er3+: Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Phys Lett, 2010, 7(8): 569-572.

    [124] [124] FLEISCHMAN Z D, SANAMYAN T. Spectroscopic analysis of Er3+: Y2O3 relevant to 27μm mid-IR laser[J]. Opt Mater Express, 2016, 6(10): 3109.

    [125] [125] WANG L, HUANG H T, SHEN D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er: Lu2O3 and Er: Y2O3 ceramic at 27 μm[J]. Opt Express, 2014, 22(16): 19495.

    [126] [126] UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 2.8 μm by Er: Lu2O3 ceramics[J]. Opt Express, 2018, 26(3): 3497-3507.

    [127] [127] DING M M, LI X X, WANG F, et al. Power scaling of diode-pumped Er: Y2O3 ceramic laser at 2.7 μm[J]. Appl Phys Express, 2022, 15(6): 062004.

    [128] [128] DING M M, WANG J, WANG F, et al. High-power Er: Y2O3 ceramic laser with an optical vortex beam output at ~ 2.7μm[J]. Front Phys, 2023, 11: 1119263.

    [129] [129] TER-GABRIELYAN N, MERKLE L D, KUPP E R, et al. Efficient resonantly pumped tape cast composite ceramic Er: YAG laser at 1645 nm[J]. Opt Lett, 2010, 35(7): 922-924.

    [130] [130] GORBACHENYA K N, KISEL V E, YASUKEVICH A S, et al. Monolithic 1.5?μm Er, Yb: GdAl3(BO3)4 eye-safe laser[J]. Opt Mater, 2019, 88: 60-66.

    [131] [131] TER-GABRIELYAN N, MERKLE L D, NEWBURGH G A, et al. Resonantly-pumped Er3+: Y2O3 ceramic laser for remote CO2 monitoring[J]. Laser Phys, 2009, 19(4): 867-869.

    [132] [132] GORBACHENYA K N, KISEL V E, YASUKEVICH A S, et al. CW YVO4: Er laser with resonant pumping[J]. J Appl Spectrosc, 2015, 82(2): 208-212.

    [133] [133] DUBINSKII M, TER-GABRIELYAN N, MERKLE L D, et al. First laser performance of Er3+-doped scandia (Sc2O3) ceramic[C]//SPIE Defense and Security Symposium. Proc SPIE 6952, Laser Source Technology for Defense and Security IV, Orlando, Florida, USA. 2008, 6952: 165-173.

    [134] [134] TER-GABRIELYAN N, MERKLE L D, IKESUE A, et al. Ultralow quantum-defect eye-safe Er: Sc2O3 laser[J]. Opt Lett, 2008, 33(13): 1524-1526.

    [135] [135] SANAMYAN T. Diode pumped cascade Er: Y2O3 laser[J]. Laser Phys Lett, 2015, 12(12): 125804.

    [136] [136] TIAN F, IKESUE A, LI J. Progress and perspectives on composite laser ceramics: A review[J]. J Eur Ceram Soc, 2022, 42(5): 1833-1851.

    [137] [137] IKESUE A, AUNG Y L. Synthesis and performance of advanced ceramic lasers[C]//2007 Conference on Lasers and Electro-Optics (CLEO). Baltimore, MD, USA. IEEE, 2008: 1-2.

    [138] [138] KANG S J L, PARK J H, KO S Y, et al. Solid-state conversion of single crystals: The principle and the state-of-the-art[J]. J Am Ceram Soc, 2015, 98(2): 347-360.

    [139] [139] EREMEEV K, LOIKO P, MAKSIMOV R, et al. Tm, Ho:(Y, Sc)2O3 Ceramic Laser at ~2.1 μm[C]//2023 Conference on Lasers and Electro-Optics/Europe (CLEO/Europe 2023) and European Quantum Electronics Conference (EQEC 2023). Munich, Germany. IEEE, 2023.

    [140] [140] EREMEEV K, LOIKO P, MAKSIMOV R, et al. Highly efficient lasing and thermal properties of Tm:Y2O3 and Tm:(Y, Sc)2O3 ceramics[J]. Opt Lett, 2023, 48(15): 3901-3904.

    Tools

    Get Citation

    Copy Citation Text

    LI Qing, WANG Jun, MA Jie, LIU Peng, SHEN Deyuan, ZHANG Jian, YU Haohai, ZHANG Huaijin, TANG Dingyuan. Research Progress on Sesquioxide Laser Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 31, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: WANG Jun (jwang025@e.ntu.edu.sg)

    DOI:

    CSTR:32186.14.

    Topics