Journal of Inorganic Materials, Volume. 36, Issue 3, 245(2021)
[1] F CHEN Y, Q HONG C, L HU C et al. Ceramic-based thermal protection materials for aerospace vehicle. Advanced Ceramics, 38, 311-390(2017).
[2] B BEHRENS, M MULLER. Technologies for thermal protection systems applied on reusable launcher. Acta Astronautica, 55, 529-536(2004).
[3] A WANG C, Y LANG, F HU L et al. Research progress on lightweight and high strength heat-insulating porous ceramics. Journal of Ceramics, 38, 287-296(2017).
[4] L TERESA, T P A MARIA, D LUISA. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. Journal of Materials Chemistry A, 7, 22768-22802(2019).
[5] Y LUO, G JIANG Y, Z FENG J et al. Progress on the preparation of SiO2 aerogel composites by ambient pressure drying technique. Materials Review, 32, 780-787(2018).
[9] N SABETZADEH, H BAHRAMBEYGI, A RABBI et al. Thermal conductivity of polyacrylonitrile nanofibre web in various nanofibre diameters and surface densities. Micro & Nano Letters, 7, 662-666(2012).
[10] J YAN, Y HAN, S XIA et al. Polymer template synthesis of flexible BaTiO3 Crystal nanofibers. Advanced Functional Materials, 29, 1907919(2019).
[12] R ARAMBAKAM, V TAFRESHI H, B POURDEYHIMI. A simple simulation method for designing fibrous insulation materials. Materials & Design, 44, 99-106(2013).
[13] R ARAMBAKAM, V TAFRESHI H, B POURDEYHIMI. Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations. International Journal of Heat and Mass Transfer, 64, 1109-1117(2013).
[14] S ZHANG X, B WANG, N WU et al. Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature. Journal of the European Ceramic Society, 40, 1877-1885(2020).
[15] K DARYABEUGI, R CUNNINGTON G, R KNUTSON J. Heat transfer modeling for rigid high-temperature fibrous insulation. Journal of Thermophysics and Heat Transfer, 27, 414-421(2013).
[16] F HU, S WU, Y SUN. Hollow structured materials for thermal insulation. Advanced Materials, 31, 1801001(2019).
[17] A MACHADO H. Modeling heat transfer with micro-scale natural convection in fibrous insulation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36, 847-857(2014).
[18] K DARYABEUGI, R CUNNINGTON G, R KNUTSON J. Combined heat transfer in high-porosity high-temperature fibrous insulation: theory and experimental validation. Journal of Thermophysics and Heat Transfer, 25, 536-546(2011).
[19] S SHIN, Q WANG, J LUO et al. Advanced materials for high- temperature thermal transport. Advanced Functional Materials, 30, 1904815(2020).
[20] W GIBSON P, C LEE, F KO et al. Application of nanofiber technology to nonwoven thermal insulation. Journal of Engineered Fibers and Fabrics, 2, 32-40(2007).
[21] B WANG, D WANG Y. Effect of fiber diameter on thermal conductivity of the electrospun carbon nanofiber mats. Advanced Materials Research, 332, 672-677(2011).
[22] J YAN, Y ZHANG, Y ZHAO et al. Transformation of oxide ceramic textiles from insulation to conduction at room temperature, 6(2020).
[23] W ZHU, A GUO, Y XUE et al. Mechanical evaluations of mullite fibrous ceramics processed by filtration and
[24] F HE, W LI, L ZKOU et al. Preparation and characterization of the three-dimensional network mullite porous fibrous materials by pressure and freeze-casting method. Ceramics International, 45, 3954-3960(2019).
[26] N WU, B WANG, D WANG Y. Enhanced mechanical properties of amorphous SiOC nanofibrous membrane through
[27] Y SI, X MAO, H ZHENG et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Advances, 5, 6027-6032(2015).
[28] X MAO, Y BAI, J YU et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. Journal of the American Ceramic Society, 99, 2760-2768(2016).
[29] P ZHANG, D CHEN, X JIAO. Fabrication of flexible
[30] W LI, M ZHAO X, F WANG Y et al. Fabrication and mechanical properties of flexible gamma-Al2O3 nanofibrous membranes. Chemical Journal of Chinese Universities, 38, 915-921(2017).
[31] K YUAN, X WANG, H LIU et al. Formation of barium zirconate fibers for high-temperature thermal insulation applications. Journal of the American Ceramic Society, 99, 2913-2919(2016).
[32] S SHI, K YUAN, C XU et al. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber. Ceramics International, 44, 14013-14019(2018).
[33] Y XIE, L WANG, B LIU et al. Flexible, controllable, and high-strength near-infrared reflective Y2O3 nanofiber membrane by electrospinning a polyacetylacetone-yttrium precursor. Materials & Design, 160, 918-925(2018).
[34] Y SI, J YU, X TANG et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nature Communications, 5, 1-9(2014).
[35] L DOU, X CHENG, X ZHANG et al. Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. Journal of Materials Chemistry A, 32, 1904331(2020).
[38] L XIAN, Y ZHANG, Y WU et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors. Ceramics International, 46, 1869-1875(2020).
[39] L YU Z, B QIN, Y MA Z et al. Superelastic hard carbon nanofiber aerogels. Advanced Materials, 31, 1900651(2019).
[40] C LI, W DING Y, C HU B et al. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels. Advanced Materials, 32, 1904331(2020).
[41] J ZHANG, B LI, L LI et al. Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose. Journal of Materials Chemistry A, 4, 2069-2074(2016).
[42] P RUCKDESCHEL, A PHILIPP, M RETSCH. Understanding thermal insulation in porous, particulate materials. Advanced Functional Materials, 27, 1702256(2017).
[43] H BRENDEL, G SEIFERT, F RARTHER. Heat transfer properties of hollow-fiber insulation materials at high temperatures. Journal of Thermophysics and Heat Transfer, 31, 463-472(2017).
[44] C WANG T, Z ZHANG, C DAI et al. Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template. Ceramics International, 45, 7120-7126(2019).
[47] C WANG T, Q YU, J KONG. Preparation and heat-insulating properties of biomorphic ZrO2 hollow fibers derived from a cotton template. International Journal of Applied Ceramic Technology, 15, 472-478(2018).
[48] C XU, H WANG, J SONG et al. Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity. Journal of the American Ceramic Society, 101, 1677-1683(2018).
[53] S GBEWONYO, W CARPENTER A, B GAUSE C et al. Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure. Materials & Design, 134, 218-225(2017).
[54] D WANG Y, H HUANG, Y ZHAO et al. Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceramics International, 46, 768-774(2020).
[56] J ZHOU, L HSIEH Y. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy, 68, 104305(2020).
[59] L YANG L, D GE, H WEI et al. Morphology and characterization of ITO-Ag-ITO films on fibers by layer-by-layer method. Applied Surface Science, 255, 8197-8201(2009).
[60] D WANG X, D SUN, Y DUAN Y et al. Radiative characteristics of opacifier-loaded silica aerogel composites. Journal of Non-crystalline Solids, 375, 31-39(2013).
[63] W TONG T, S SWATHI P, JR G R CUNNINGTON. Reduction of radiative heat transfer in thermal insulations by use of dielectric coated fibers. International Communications in Heat and Mass Transfer, 16, 851-860(1989).
[64] D HASS D, D PRASDA B, E GLASS D et al. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer. NASA Contractor Report 201733(1997).
[69] L XU, Y JIANG, J FENG et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceramics International, 41, 437-442(2015).
Get Citation
Copy Citation Text
Xiaoshan ZHANG, Bing WANG, Nan WU, Cheng HAN, Chunzhi WU, Yingde WANG.
Category: REVIEW
Received: Apr. 26, 2020
Accepted: --
Published Online: Dec. 8, 2021
The Author Email: WANG Yingde (wangyingde@nudt.edu.cn)