Journal of Atmospheric and Environmental Optics, Volume. 17, Issue 4, 453(2022)
Research on cloud parameter inversion method based on deep learning
[1] [1] Rossow W B, Mosher F, Kinsella E, et al. ISCCP cloud algorithm intercomparison [J]. Journal of Climate and Applied Meteorology, 1985, 24(9): 877-903.
[2] [2] Yang J, Chen B J, Yin Y. Physics of Clouds and Precipitation [M]. Beijing: Meteorological Press, 2011.
[3] [3] Li W B. Atmospheric Remote Sensing [M]. Beijing: Peking University Press, 2014.
[4] [4] Strabala K I, Ackerman S A, Menzel W P. Cloud properties inferred from 8-12-μm data [J]. Journal of Applied Meteorology, 1994, 33(2): 212-229.
[5] [5] Baum B A, Soulen P F, Strabala K I, et al. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D9): 11781-11792.
[6] [6] Segal-Rozenhaimer M, Li A L, Das K, et al. Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN) [J]. Remote Sensing of Environment, 2020, 237: 111446.
[7] [7] He Y M, Wang H J, Guan H. Application of support vector machines in cloud detection using EOS/MODIS [C]. International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Infrared Imaging and Applications, 2009, 7383: 209-216.
[8] [8] Yang C P, Guo J. Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using artificial neural networks [J]. Optik, 2016, 127(4): 1797-1803.
[9] [9] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507.
[10] [10] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[11] [11] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90.
[12] [12] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]. IEEE Conference on Computer Vision and Pattern Recognition. June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778.
[13] [13] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, 2015: 234-241.
[14] [14] Altini N, Cascarano G D, Brunetti A, et al. Semantic segmentation framework for glomeruli detection and classification in kidney histological sections [J]. Electronics, 2020, 9(3): 503.
[15] [15] Hu X L, Liu Z Y, Zhou H Y, et al. Deep HT: A deep neural network for diagnose on MR images of tumors of the hand [J]. PLoS One, 2020, 15(8): e0237606.
[16] [16] Huang X D, Zhang H, Zhuo L, et al. TISNet-enhanced fully convolutional network with encoder-decoder structure for tongue image segmentation in traditional Chinese medicine [J]. Computational and Mathematical Methods in Medicine, 2020, 2020: 6029258.
[17] [17] Guo H X, He G J, Jiang W, et al. A multi-scale water extraction convolutional neural network (MWEN) method for GaoFen-1 remote sensing images [J]. ISPRS International Journal of Geo-Information, 2020, 9(4): 189.
[18] [18] Wang G J, Wu M J, Wei X K, et al. Water identification from high-resolution remote sensing images based on multidimensional densely connected convolutional neural networks [J]. Remote Sensing, 2020, 12(5): 795.
[19] [19] Liu P H, Liu X P, Liu M X, et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network [J]. Remote Sensing, 2019, 11(7): 830.
[20] [20] Shi Q, Liu M X, Liu X P, et al. Domain adaption for fine-grained urban village extraction from satellite images [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8): 1430-1434.
[21] [21] Wang Y H, Liang B X, Ding M, et al. Dense semantic labeling with atrous spatial pyramid pooling and decoder for high-resolution remote sensing imagery [J]. Remote Sensing, 2018, 11(1): 20.
[22] [22] Yao X D, Yang H, Wu Y L, et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features [J]. Sensors (Basel), 2019, 19(12): 2792.
[23] [23] Jiang N, Li J Y. An improved semantic segmentation method for remote sensing images based on neural network [J]. Traitement Du Signal, 2020, 37(2): 271-278.
[24] [24] Zhan Z Q, Zhang X M, Liu Y, et al. Vegetation land use/land cover extraction from high-resolution satellite images based on adaptive context inference [J]. IEEE Access, 2020, 8: 21036-21051.
[25] [25] Venugopal N. Automatic semantic segmentation with DeepLab dilated learning network for change detection in remote sensing images [J]. Neural Processing Letters, 2020, 51(3): 2355-2377.
[26] [26] Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]. Computer Vision-ECCV 2018, 2018: 833-851.
[27] [27] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[28] [28] Ben-Dor E. A precaution regarding cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band [J]. Remote Sensing of Environment, 1994, 50(3): 346-350.
[29] [29] Wang L Y. Research on Semantic Segmentation of Remote Sensing Images of the Ground Objects Based on Deeplab V3+ Network [D]. Harbin: Harbin Institute of Technology, 2020.
Get Citation
Copy Citation Text
WU Wenhan, MA Jinji, SUN Erchang, GUO Jinyu, YANG Guang, WANG Yuyao. Research on cloud parameter inversion method based on deep learning[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 453
Category:
Received: Dec. 4, 2020
Accepted: --
Published Online: Aug. 24, 2022
The Author Email: Wenhan WU (wuwenhan@ahnu.edu.cn)