Laser & Optoelectronics Progress, Volume. 55, Issue 10, 102801(2018)

Laser Frequency Stabilization and Shifting Applied in Narrowband Sodium Lidar System for Wind and Temperature Measurement

Xia Yuan1、*, Cheng Xuewu2, Li Faquan2, and Li Yajuan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [1] [1] Plane J M C, Gardner C S, Yu J, et al. Mesospheric Na layer at 40°N: modeling and observations[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D3): 3773-3788.

    [2] [2] Chu X Z, Papen G. Resonance fluorescence lidar for measurements of the middle and upper atmosphere[M]∥Fujii T, Fukuchi T. Laser Remote Sensing.1 st ed. Boca Raton: CRC Press, 2005: 235-240.

    [3] [3] Bills R E, Gardner C S, She C Y. Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere[J]. Optical Engineering, 1991, 30(1): 13-21.

    [4] [4] Kaifler B. Na Lidar at ALOMAR: electrooptic improvements, analysis algorithms, and selected atmospheric observations 80 to 100 km above Northern Norway[D]. Ulm: Ulm University, 2009.

    [5] [5] She C Y, Yu J R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region[J]. Geophysical Research Letters, 1994, 21(17): 1771-1774.

    [6] [6] She C Y, Sherman J, Yuan T, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophysical Research Letters, 2003, 30(6): 1319-1323.

    [7] [7] Hu X, Yan Z A, Guo S Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 56(4/5): 417-423.

    [8] [8] Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind[J]. Applied Optics, 2012, 51(22): 5401-5411.

    [9] [9] Xia Y, Du L F, Cheng X W, et al. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region[J]. Optics Express, 2017, 25(5): 5264-5278.

    [10] [10] Xia Y, Wang Z L, Cheng X W, et al. All-solid-state narrowband sodium lidar system and preliminary result[J]. Chinese Journal of Lasers, 2015, 42(s1): s113003.

    [11] [11] Li F Q, Yang Y, Cheng X W, et al. The techniques and progress of wind and temperature lidar in WIPM[C]∥The 27th International Laser Radar Conference, July 10, 2015, New York, USA. Les Ulis: EDP Sciences, 2016, 119: 12002.

    [12] [12] Xiang J F, Wang L G, Li L, et al. Automatic frequency stabilization system of external cavity diode laser based on digital signal processing technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002.

    [13] [13] Yu Q, Xiong W, Zhang Y, et al. Design and implementation of miniaturized frequency-stabilized laser system with low power consumption[J]. Chinese Journal of Lasers, 2016, 43(8): 0801010.

    [14] [14] Yuan D D, Hu S L, Liu H H, et al. Research of laser frequency stabilization[J]. Laser & Optoelectronics Progress, 2011,48(8): 081401.

    Tools

    Get Citation

    Copy Citation Text

    Xia Yuan, Cheng Xuewu, Li Faquan, Li Yajuan. Laser Frequency Stabilization and Shifting Applied in Narrowband Sodium Lidar System for Wind and Temperature Measurement[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Mar. 16, 2018

    Accepted: --

    Published Online: Oct. 14, 2018

    The Author Email: Yuan Xia (xiayuanxxyy@163.com)

    DOI:10.3788/lop55.102801

    Topics