Journal of the Chinese Ceramic Society, Volume. 52, Issue 10, 3217(2024)

Structural Regulation and Application of Halloysite Nanotubes Functional Materials

JIANG Xiaoyu, ZHANG Jiafang, ZHAO Sikai, and SHEN Yanbai*
Author Affiliations
  • [in Chinese]
  • show less
    References(77)

    [1] [1] MASSARO M, NOTO R, RIELA S. Past, present and future perspectives on halloysite clay minerals[J]. Molecules, 2020, 25(20):4863.

    [2] [2] CRAVERO F, JOCK CHURCHMAN G. The origin of spheroidal halloysites: A review of the literature[J]. Clay Miner, 2016, 51(3):417–427.

    [3] [3] JOUSSEIN E, PETIT S, CHURCHMAN J, et al. Halloysite clay minerals—A review[J]. Clay Miner, 2005, 40(4): 383–426.

    [4] [4] YANG Y T, CHEN Y, LENG F, et al. Recent advances on surface modification of halloysite nanotubes for multifunctional applications[J].Appl Sci, 2017, 7: 1215.

    [5] [5] LI Y, YUAN X Z, JIANG L B, et al. Manipulation of the halloysite clay nanotube lumen for environmental remediation: A review[J].Environ Sci: Nano, 2022, 9(3): 841–866.

    [7] [7] WILSON I, KEELING J. Global occurrence, geology and characteristics of tubular halloysite deposits[J]. Clay Miner, 2016, 51(3):309–324.

    [14] [14] WILSON I R. Kaolin and halloysite deposits of China[J]. Clay Miner,2004, 39(1): 1–15.

    [19] [19] YUAN P, TAN D Y, ANNABI-BERGAYA F, et al. Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating[J]. Clays Clay Miner, 2012, 60(6):561–573.

    [20] [20] SHU Z, CHEN Y, ZHOU J, et al. Nanoporous-walled silica and alumina nanotubes derived from halloysite: Controllable preparation and their dye adsorption applications[J]. Appl Clay Sci, 2015, 112–113:17–24.

    [21] [21] ZSIRKA B, VáGV?LGYI V, GY?RFI K, et al. Compositional,structural, and surface characterization of heat-treated halloysite samples: Influence of surface treatment on photochemical activity[J].Appl Clay Sci, 2021, 212: 106222.

    [22] [22] WHITE R D, BAVYKIN D V, WALSH F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions[J].Nanotechnology, 2012, 23(6): 065705.

    [23] [23] ABDULLAYEV E, JOSHI A, WEI W B, et al. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide[J]. ACS Nano, 2012, 6(8): 7216–7226.

    [24] [24] BELKASSA K, BESSAHA F, MAROUF-KHELIFA K, et al.Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite[J]. Colloids Surf A Physicochem Eng Aspects, 2013, 421: 26–33.

    [25] [25] DENG L L, YUAN P, LIU D, et al. Effects of calcination and acid treatment on improving benzene adsorption performance of halloysite[J]. Appl Clay Sci, 2019, 181: 105240.

    [26] [26] SHU Z, CHEN Y, ZHOU J, et al. Preparation of halloysite-derived mesoporous silica nanotube with enlarged specific surface area for enhanced dye adsorption[J]. Appl Clay Sci, 2016, 132–133: 114–121.

    [27] [27] ASGAR H, JIN J Q, MILLER J, et al. Contrasting thermally-induced structural and microstructural evolution of alumino-silicates with tubular and planar arrangements: Case study of halloysite and kaolinite[J]. Colloids Surf A Physicochem Eng Aspects, 2021, 613:126106.

    [28] [28] RONG R, XU X L, ZHU S S, et al. Facile preparation of homogeneous and length controllable halloysite nanotubes by ultrasonic scission and uniform viscosity centrifugation[J]. Chem Eng J, 2016, 291: 20–29.

    [29] [29] OSIPOVA V A, PESTOV A V, MEKHAEV A V, et al. Functionalization of halloysite by 3-aminopropyltriethoxysilane in various solvents[J]. Petrol Chem, 2020, 60(5): 597–600.

    [30] [30] ZOU M L, DU M L, ZHANG M, et al. Synthesis and deposition of ultrafine noble metallic nanoparticles on amino-functionalized halloysite nanotubes and their catalytic application[J]. Mater Res Bull,2015, 61: 375–382.

    [31] [31] JIA S Y, FAN M D. Silanization of heat-treated halloysite nanotubes using γ-aminopropyltriethoxysilane[J]. Appl Clay Sci, 2019, 180:105204.

    [32] [32] SIVA GANGI REDDY N, MADHUSUDANA RAO K, PARK S Y, et al. Fabrication of aminosilanized halloysite based floating biopolymer composites for sustained gastro retentive release of curcumin[J].Macromol Res, 2019, 27(5): 490–496.

    [33] [33] LIU S T, CHEN X G, ZHANG S L, et al. Preparation and characterization of halloysite-based carriers for quercetin loading and release[J]. Clays Clay Miner, 2021, 69(1): 94–104.

    [34] [34] LISUZZO L, CAVALLARO G, PASBAKHSH P, et al. Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement[J]. J Colloid Interface Sci, 2019, 547: 361–369.

    [35] [35] YAH W O, TAKAHARA A, LVOV Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: New inorganic tubular micelle[J]. J Am Chem Soc, 2012, 134(3): 1853–1859.

    [36] [36] TONLE I K, LETAIEF S, NGAMENI E, et al. Nanohybrid materials from the grafting of imidazolium cations on the interlayer surfaces of kaolinite. Application as electrode modifier[J]. J Mater Chem, 2009,19(33): 5996–6003.

    [37] [37] YAH W O, XU H, SOEJIMA H, et al. Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen[J]. J Am Chem Soc, 2012, 134(29): 12134–12137.

    [38] [38] FROST R L, KRISTOF J, HORVATH E, et al. Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 K[J]. J Colloid Interface Sci, 2000, 226(2): 318–327.

    [39] [39] MAHREZ N, BENDENIA S, MAROUF-KHELIFA K, et al.Improving of the adsorption capacity of halloysite nanotubes intercalated with dimethyl sulfoxide[J]. Compos Interfaces, 2015,22(6): 403–417.

    [40] [40] JOUSSEIN E, PETIT S, DELVAUX B. Behavior of halloysite clay under formamide treatment[J]. Appl Clay Sci, 2007, 35(1/2): 17–24.

    [41] [41] LUCA V, THOMSON S. Intercalation and polymerisation of aniline within a tubular aluminosilicate[J]. J Mater Chem, 2000, 10(9):2121–2126.

    [42] [42] HORVáTH E, KRISTóF J, FROST R L, et al. Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions[J]. J Therm Anal Calorim, 2003, 71(3): 707–714.

    [43] [43] CHENG Z L, CAO B C, LIU Z. Study on intercalation in layered structure of halloysite nanotubes (HNTs)[J]. Micro Nano Lett, 2019,14(5): 585–589.

    [44] [44] MELLOUK S, CHERIFI S, SASSI M, et al. Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions[J]. Appl Clay Sci, 2009, 44(3/4): 230–236.

    [45] [45] ZHANG Y M, LI Y Q, ZHANG Y F. Preparation and intercalation structure model of halloysite-stearic acid intercalation compound[J].Appl Clay Sci, 2020, 187: 105451.

    [46] [46] VERGARO V, ABDULLAYEV E, LVOV Y M, et al.Cytocompatibility and uptake of halloysite clay nanotubes[J].Biomacromolecules, 2010, 11(3): 820–826.

    [48] [48] STODOLAK-ZYCH E, RAPACZ-KMITA A, GAJEK M, et al.Functionalized halloysite nanotubes as potential drug carriers[J]. J Funct Biomater, 2023, 14(3): 167.

    [49] [49] YENDLURI R, OTTO D P, DE VILLIERS M M, et al. Application of halloysite clay nanotubes as a pharmaceutical excipient[J]. Int J Pharm,2017, 521(1/2): 267–273.

    [50] [50] HASANI M, ABDOUSS M, SHOJAEI S. Nanocontainers for drug delivery systems: A review of Halloysite nanotubes and their properties[J]. Int J Artif Organs, 2021, 44(6): 426–433.

    [51] [51] LIU M X, FAKHRULLIN R, NOVIKOV A, et al. Tubule nanoclay-organic heterostructures for biomedical applications[J].Macromol Biosci, 2018, 19(4): e1800419.

    [53] [53] PRICE R R, GABER B P, LVOV Y. In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral[J]. J Microencapsul, 2001, 18(6):713–722.

    [54] [54] HEMMATPOUR H, HADDADI-ASL V, KHANIPOUR F, et al.Mussel-inspired grafting pH-responsive brushes onto halloysite nanotubes for controlled release of doxorubicin[J]. Eur Polym J, 2022,180: 111583.

    [56] [56] BESSAHA F, MAHREZ N, MAROUF-KHELIFA K, et al. Removal of Congo red by thermally and chemically modified halloysite:Equilibrium, FTIR spectroscopy, and mechanism studies[J]. Int J Environ Sci Technol, 2019, 16(8): 4253–4260.

    [57] [57] ZHAO M F, LIU P. Adsorption behavior of methylene blue on halloysite nanotubes[J]. Microporous Mesoporous Mater, 2008,112(1/3): 419–424.

    [58] [58] NGULUBE T, GUMBO J R, MASINDI V, et al. Evaluation of the efficacy of halloysite nanotubes in the removal of acidic and basic dyes from aqueous solution[J]. Clay Miner, 2019, 54(2): 197–207.

    [59] [59] JING QINGXIU, CHAI LIYUAN, HUANG XIAODONG, et al.Behavior of ammonium adsorption by clay mineral halloysite[J]. Trans Nonferrous Met Soc China, 2017, 27(7): 1627–1635.

    [60] [60] WANG X L, GUO H X, WANG F, et al. Halloysite nanotubes: An eco-friendly adsorbent for the adsorption of Th(IV)/U(VI) ions from aqueous solution[J]. J Radioanal Nucl Chem, 2020, 324(3): 1151–1165.

    [62] [62] FILICE S, BONGIORNO C, LIBERTINO S, et al. Structural characterization and adsorption properties of dunino raw halloysite mineral for dye removal from water[J]. Materials, 2021, 14(13): 3676.

    [63] [63] YU W B, XU H F, TAN D Y, et al. Adsorption of iodate on nanosized tubular halloysite[J]. Appl Clay Sci, 2020, 184: 105407.

    [64] [64] WANG Q, ZHANG J P, WANG A Q. Alkali activation of halloysite for adsorption and release of ofloxacin[J]. Appl Surf Sci, 2013, 287:54–61.

    [65] [65] YU W B, WAN Q, TAN D Y, et al. Removal of iodide from water using halloysite/Ag2O composites as efficient adsorbent[J]. Appl Clay Sci, 2021, 213: 106241.

    [66] [66] G?ADYSZ-P?ASKA A, MAJDAN M, TARASIUK B, et al. The use of halloysite functionalized with isothiouronium salts as an organic/inorganic hybrid adsorbent for uranium(VI) ions removal[J]. J Hazard Mater, 2018, 354: 133–144.

    [67] [67] ZHANG D A, CUI Y, YANG G, et al. Mussel-inspired fabrication of halloysite nanotube-based magnetic composites as catalysts for highly efficient degradation of organic dyes[J]. Appl Clay Sci, 2020, 198:105835.

    [68] [68] MALEKI A, HAJIZADEH Z, FIROUZI-HAJI R. Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones[J]. Microporous Mesoporous Mater,2018, 259: 46–53.

    [69] [69] ZHANG W Y, YAN X, ZHILIANGLIU, et al. Halloysite nanotubes supported copper oxide composites used as efficient catalysts for bisphenol A removal[J]. Appl Clay Sci, 2022, 224: 106509.

    [70] [70] XIA M, LIU H B, WANG H L, et al. Impact of the interaction between hematite and halloysite on environmental fate of organic pollutants[J].Appl Clay Sci, 2021, 209: 106123.

    [71] [71] DEDZO G K, NGNIE G, DETELLIER C. PdNP decoration of halloysite lumen via selective grafting of ionic liquid onto the aluminol surfaces and catalytic application[J]. ACS Appl Mater Interfaces, 2016,8(7): 4862–4869.

    [72] [72] GOSWAMI N, BISWAS B, NAIDU R, et al. Spatially localized synthesis of metal nanoclusters on clay nanotubes and their catalytic performance[J]. ACS Sustainable Chem Eng, 2019, 7(22):18350–18358.

    [73] [73] GAO X B, TANG F, JIN Z X. Pt-Cu bimetallic nanoparticles loaded in the lumen of halloysite nanotubes[J]. Langmuir, 2019, 35(45):14651–14658.

    [74] [74] ZHENG Y, WANG L F, ZHONG F L, et al. Site-oriented design of high-performance halloysite-supported palladium catalysts for methane combustion[J]. Ind Eng Chem Res, 2020, 59(13): 5636–5647.

    [75] [75] SANCHEZ-BALLESTER N M, RAMESH G V, TANABE T, et al.Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation[J]. J Mater Chem A, 2015, 3(12):6614–6619.

    [76] [76] RISYON N P, OTHMAN S H, BASHA R K, et al. Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging[J]. Food Packag Shelf Life, 2020, 23: 100450.

    [77] [77] MAKAREMI M, PASBAKHSH P, CAVALLARO G, et al. Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications[J]. ACS Appl Mater Interfaces, 2017, 9(20): 17476–17488.

    [78] [78] KUMAR L, DESHMUKH R K, HAKIM L, et al. Halloysite nanotube as a functional material for active food packaging application: A review[J]. Food Bioprocess Technol, 2024, 17(1): 33–46.

    [79] [79] GORRASI G, SENATORE V, VIGLIOTTA G, et al. PET–halloysite nanotubes composites for packaging application: Preparation,characterization and analysis of physical properties[J]. Eur Polym J,2014, 61: 145–156.

    [80] [80] MEIRA S M M, ZEHETMEYER G, WERNER J O, et al. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides[J]. Food Hydrocoll, 2017, 63:561–570.

    [81] [81] ANUSHIKHA, DESHMUKH R K, KUNAM P K, et al. Guar gum based flexible packaging material with an active surface reinforced by litchi shell derived micro fibrillated cellulose and halloysite nanotubes[J]. Sustain Chem Pharm, 2023, 36: 101302.

    [82] [82] SALMAS C E, GIANNAKAS A E, MOSCHOVAS D, et al. Kiwi fruits preservation using novel edible active coatings based on rich thymol halloysite nanostructures and chitosan/polyvinyl alcohol gels[J].Gels, 2022, 8(12): 823.

    [83] [83] ABDULLAH Z W, DONG Y, HAN N, et al. Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/glycerol(GL)/halloysite nanotube (HNT) bionanocomposite films:Experimental characterisation and modelling approach[J]. Compos Part B Eng, 2019, 174: 107033.

    [84] [84] GAIKWAD K K, SINGH S, LEE Y S. High adsorption of ethylene by alkali-treated halloysite nanotubes for food-packaging applications[J].Environ Chem Lett, 2018, 16(3): 1055–1062.

    [85] [85] TAS C E, HENDESSI S, BAYSAL M, et al. Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties[J]. Food Bioprocess Technol, 2017, 10(4): 789–798.

    [86] [86] LAMPROPOULOU P, PAPOULIS D. Halloysite in different ceramic products: A review[J]. Materials, 2021, 14(19): 5501.

    [88] [88] HARRATI A, ARKAME Y, MANNI A, et al. Cordierite-based refractory ceramics from natural halloysite and peridotite: Insights on technological properties[J]. J Indian Chem Soc, 2022, 99(6): 100496.

    [89] [89] TAMSU SELLI N, AKER I M, BASARAN N, et al. Influence of calcined halloysite on technological & mechanical properties of wall tile body[J]. J Asian Ceram Soc, 2021, 9(3): 1331–1344.

    [91] [91] EL HADDAR A, GHARIBI E, AZDIMOUSA A, et al. Characterization of halloysite (North East Rif, Morocco): Evaluation of its suitability for the ceramics industry[J]. Clay Miner, 2018, 53(1): 65–78.

    [92] [92] HASAN K S, ZAINUDDIN S, TURNER A J, et al. Halloysite infused jute fiber/poly (3-hydroxy-butyrate-co-3-valerate) bionanocomposites:Thermal, mechanical and fire retardant properties[J]. J Compos Mater,2022, 56(27): 4069–4079.

    [93] [93] JASINSKI E, BOUNOR-LEGARé V, TAGUET A, et al. Influence of halloysite nanotubes onto the fire properties of polymer based composites: A review[J]. Polym Degrad Stab, 2021, 183: 109407.

    [95] [95] DU M L, GUO B C, JIA D M. Newly emerging applications of halloysite nanotubes: A review[J]. Polym Int, 2010, 59(5): 574–582.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Xiaoyu, ZHANG Jiafang, ZHAO Sikai, SHEN Yanbai. Structural Regulation and Application of Halloysite Nanotubes Functional Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(10): 3217

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 2, 2024

    Accepted: --

    Published Online: Nov. 14, 2024

    The Author Email: Yanbai SHEN (shenyanbai@mail.neu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240107

    Topics